Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from pycaret.regression import load_model, predict_model
|
5 |
+
from fastapi import FastAPI
|
6 |
+
import uvicorn
|
7 |
+
from pydantic import create_model
|
8 |
+
|
9 |
+
# Create the app
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Load trained Pipeline
|
13 |
+
model = load_model("lr_api")
|
14 |
+
|
15 |
+
# Create input/output pydantic models
|
16 |
+
input_model = create_model("lr_api_input", **{'rownames': 1030, 'year': 1994, 'violent': 304.5, 'murder': 2.9000000953674316, 'prisoners': 152, 'afam': 1.769081950187683, 'cauc': 70.66014862060547, 'male': 18.20832061767578, 'population': 1.9304360151290894, 'income': 12036.8603515625, 'density': 0.023493800312280655, 'state': 'Utah', 'law': 'yes'})
|
17 |
+
output_model = create_model("lr_api_output", prediction=63.6)
|
18 |
+
|
19 |
+
|
20 |
+
# Define predict function
|
21 |
+
@app.post("/predict", response_model=output_model)
|
22 |
+
def predict(data: input_model):
|
23 |
+
data = pd.DataFrame([data.dict()])
|
24 |
+
predictions = predict_model(model, data=data)
|
25 |
+
return {"prediction": predictions["prediction_label"].iloc[0]}
|
26 |
+
|
27 |
+
|
28 |
+
#if __name__ == "__main__":
|
29 |
+
# uvicorn.run(app, host="127.0.0.1", port=8000)
|