# -*- coding: utf-8 -*- import pandas as pd from pycaret.regression import load_model, predict_model from fastapi import FastAPI from pydantic import BaseModel import uvicorn # Create the app app = FastAPI() # Load trained Pipeline model = load_model("lr_api") # Create input/output pydantic models class InputModel(BaseModel): rownames: int year: int violent: float murder: float prisoners: int afam: float cauc: float male: float population: float income: float density: float state: str law: str class OutputModel(BaseModel): prediction: float # Define predict function @app.post("/predict", response_model=OutputModel) def predict(data: InputModel): data = pd.DataFrame([data.dict()]) predictions = predict_model(model, data=data) return {"prediction": predictions["prediction_label"].iloc[0]} #if __name__ == "__main__": # uvicorn.run(app, host="127.0.0.1", port=8000)