Delete app.py
Browse files
app.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import sys
|
3 |
-
import gradio as gr
|
4 |
-
import asyncio
|
5 |
-
import nest_asyncio
|
6 |
-
|
7 |
-
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
8 |
-
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
9 |
-
|
10 |
-
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
11 |
-
from llama_index.llms import HuggingFaceLLM
|
12 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
-
from g4f import Provider, models
|
14 |
-
from langchain.llms.base import LLM
|
15 |
-
from llama_index.llms import LangChainLLM
|
16 |
-
from langchain_g4f import G4FLLM
|
17 |
-
|
18 |
-
nest_asyncio.apply()
|
19 |
-
|
20 |
-
documents = SimpleDirectoryReader('data').load_data()
|
21 |
-
|
22 |
-
embed_model = HuggingFaceEmbeddings(
|
23 |
-
model_name="sentence-transformers/all-mpnet-base-v2"
|
24 |
-
)
|
25 |
-
|
26 |
-
async def main(query):
|
27 |
-
llm: LLM = G4FLLM(
|
28 |
-
model=models.gpt_35_turbo,
|
29 |
-
provider=Provider.DeepAi,
|
30 |
-
)
|
31 |
-
|
32 |
-
llm = LangChainLLM(llm=llm)
|
33 |
-
|
34 |
-
service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model)
|
35 |
-
|
36 |
-
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
37 |
-
|
38 |
-
query_engine = index.as_query_engine()
|
39 |
-
response = query_engine.query(query)
|
40 |
-
return response
|
41 |
-
|
42 |
-
iface = gr.Interface(fn=main, inputs="text", outputs="text")
|
43 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|