Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
import asyncio
|
5 |
+
import nest_asyncio
|
6 |
+
|
7 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
8 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
9 |
+
|
10 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
11 |
+
from llama_index.llms import HuggingFaceLLM
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
from g4f import Provider, models
|
14 |
+
from langchain.llms.base import LLM
|
15 |
+
from llama_index.llms import LangChainLLM
|
16 |
+
from langchain_g4f import G4FLLM
|
17 |
+
|
18 |
+
nest_asyncio.apply()
|
19 |
+
|
20 |
+
documents = SimpleDirectoryReader('data').load_data()
|
21 |
+
|
22 |
+
embed_model = HuggingFaceEmbeddings(
|
23 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
24 |
+
)
|
25 |
+
|
26 |
+
async def main(query):
|
27 |
+
llm: LLM = G4FLLM(
|
28 |
+
model=models.gpt_35_turbo,
|
29 |
+
provider=Provider.DeepAi,
|
30 |
+
)
|
31 |
+
|
32 |
+
llm = LangChainLLM(llm=llm)
|
33 |
+
|
34 |
+
service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model)
|
35 |
+
|
36 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
37 |
+
|
38 |
+
query_engine = index.as_query_engine()
|
39 |
+
response = query_engine.query(query)
|
40 |
+
return response
|
41 |
+
|
42 |
+
iface = gr.Interface(fn=main, inputs="text", outputs="text")
|
43 |
+
iface.launch()
|