Docfile Jishnnu commited on
Commit
3bc4804
·
0 Parent(s):

Duplicate from Jishnnu/Detecting_COVID-19

Browse files

Co-authored-by: Jishnu Pillai Anilkumar <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
Covid Dataset.csv ADDED
The diff for this file is too large to render. See raw diff
 
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Detecting COVID-19
3
+ emoji: 🚀
4
+ colorFrom: gray
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.29.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: Jishnnu/Detecting_COVID-19
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
ann_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17e86be19b8aee961a1e8226f2ce26e3e34abbcd4ae62ae79398854d25ea21db
3
+ size 56008
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import joblib
4
+ from sklearn.preprocessing import LabelEncoder
5
+
6
+ # Load the dataset and get the column names
7
+ dataset = pd.read_csv('Covid Dataset.csv')
8
+ columns_to_drop = ['Wearing Masks', 'Sanitization from Market']
9
+ dataset = dataset.drop(columns_to_drop, axis=1)
10
+ column_names = dataset.columns.tolist()
11
+
12
+ # Define a function to make predictions using the selected models
13
+ def predict_covid(*symptoms):
14
+ # Convert None values to Falses
15
+ symptoms = [False if symptom is None else symptom for symptom in symptoms]
16
+
17
+ if sum(symptoms) == 0:
18
+ return "COVID-19 Negative"
19
+
20
+ # Load the saved models
21
+ model_logreg = joblib.load('logreg_model.h5')
22
+ model_rf_classifier = joblib.load('rf_classifier_model.h5')
23
+ model_dt_classifier = joblib.load('dt_classifier_model.h5')
24
+ model_knn_classifier = joblib.load('knn_classifier_model.h5')
25
+ model_svm_classifier = joblib.load('svm_classifier_model.h5')
26
+ model_ann_classifier = joblib.load('ann_model.h5')
27
+ voting_classifier = joblib.load('voting_classifier_model.h5')
28
+ stacking_classifier = joblib.load('stacking_classifier_model.h5')
29
+
30
+ # Prepare the input data
31
+ label_encoder = LabelEncoder()
32
+ input_data = pd.DataFrame([list(symptoms)], columns=column_names[:-1])
33
+ encoded_input_data = input_data.copy()
34
+ for column in encoded_input_data.columns:
35
+ if encoded_input_data[column].dtype == object:
36
+ encoded_input_data[column] = label_encoder.transform(encoded_input_data[column])
37
+
38
+ # Make predictions using the selected models
39
+ logreg_prediction = int(model_logreg.predict(encoded_input_data)[0])
40
+ rf_prediction = int(model_rf_classifier.predict(encoded_input_data)[0])
41
+ dt_prediction = int(model_dt_classifier.predict(encoded_input_data)[0])
42
+ knn_prediction = int(model_knn_classifier.predict(encoded_input_data)[0])
43
+ svm_prediction = int(model_svm_classifier.predict(encoded_input_data)[0])
44
+ ann_prediction = int(model_ann_classifier.predict(encoded_input_data)[0])
45
+ voting_prediction = int(voting_classifier.predict(encoded_input_data)[0])
46
+ stacking_prediction = int(stacking_classifier.predict(encoded_input_data)[0])
47
+
48
+ # Determine the overall prediction
49
+ prediction = 1 if sum([logreg_prediction, rf_prediction, dt_prediction, knn_prediction,
50
+ svm_prediction, ann_prediction, voting_prediction, stacking_prediction]) >= 4 else 0
51
+
52
+ # Return the prediction
53
+ return "COVID-19 Positive" if prediction == 1 else "COVID-19 Negative"
54
+
55
+ # Create a list of checkboxes for the dataset columns
56
+ checkboxes = [gr.inputs.Checkbox(label=column_name) for column_name in column_names[:-1]]
57
+
58
+ # Create the input interface with the checkboxes
59
+ inputs = checkboxes
60
+
61
+ # Create the output interface with the predicted labels
62
+ outputs = gr.outputs.Label(num_top_classes=1, label="COVID-19 Status")
63
+ title = "COVID-19 Detection"
64
+ description = "Select your symptoms and contact history to check if you have COVID-19"
65
+ final_model = gr.Interface(fn=predict_covid, inputs=inputs, outputs=outputs, title=title, description=description)
66
+
67
+ # Create the Gradio app
68
+ if __name__ == '__main__':
69
+ final_model.launch(inline=False)
dt_classifier_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22a8226d1502588b878b9793735203fff1477577573bd1db93d984f9785f8610
3
+ size 7945
knn_classifier_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e54a043f4a9c4ffd391b3a53dcbd975382fd6fbbcda4a837d46a478e7a7aa061
3
+ size 744036
logreg_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c552e526f979da4ec6e990943ded54b960bfa9473510f1bbbe2049422d3d4f64
3
+ size 991
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio
2
+ pandas
3
+ joblib
4
+ scikit-learn
rf_classifier_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a352e0c96d95d578575036697ee75a3212ea7dc91770b2cda5fac29f131bcbe
3
+ size 1189097
stacking_classifier_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27cd49868848d0fbf5b420cd64d22e9190501bf284bce9e37bf62d4acdb615d8
3
+ size 4133300
svm_classifier_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4521622ccdc2c7899b6d09666ffac4dd9316023720504ced326927717f0ad8d
3
+ size 66091
voting_classifier_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27cd49868848d0fbf5b420cd64d22e9190501bf284bce9e37bf62d4acdb615d8
3
+ size 4133300