File size: 3,934 Bytes
cf07f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
from google import genai
import logging
from pathlib import Path
import sys
from typing import Generator
import json
import os 


api_key =  os.environ.get("GEMINI_API_KEY")

#pi_key = "YOUR_API_KEY_HERE"

# Configuration du logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler(Path('app.log'))
    ]
)
logger = logging.getLogger(__name__)

app = Flask(__name__)

class GeminiClient:
    def __init__(self, api_key: str):
        self.client = None
        self.init_client(api_key)
        
    def init_client(self, api_key: str) -> None:
        try:
            self.client = genai.Client(
                api_key=api_key,
                http_options={'api_version': 'v1alpha'}
            )
        except Exception as e:
            logger.error(f"Erreur d'initialisation du client Gemini: {e}")
            raise RuntimeError(f"Impossible d'initialiser le client Gemini: {e}")

    def get_response(self, question: str, model_name: str) -> Generator:
        if not self.client:
            raise RuntimeError("Client Gemini non initialisé")
            
        try:
            response = self.client.models.generate_content_stream(
                model=model_name,
                config={'thinking_config': {'include_thoughts': True}},
                contents=[question]
            )
            return response
        except Exception as e:
            logger.error(f"Erreur lors de la génération de la réponse: {e}")
            raise

def stream_response(response: Generator):
    thinking_text = ""
    answer_text = ""
    mode = 'starting'
    
    try:
        for chunk in response:
            if hasattr(chunk, 'candidates') and chunk.candidates:
                content = chunk.candidates[0].content
                
                if hasattr(content, 'parts'):
                    for part in content.parts:
                        has_thought = hasattr(part, 'thought') and part.thought
                        text = getattr(part, 'text', '')
                        
                        if not text:
                            continue
                            
                        if has_thought:
                            thinking_text += text
                            yield json.dumps({
                                'type': 'thinking',
                                'content': thinking_text
                            }) + '\n'
                        else:
                            answer_text += text
                            yield json.dumps({
                                'type': 'answer',
                                'content': answer_text
                            }) + '\n'
                            
    except Exception as e:
        logger.error(f"Erreur dans le streaming de la réponse: {e}")
        yield json.dumps({
            'type': 'error',
            'content': "Une erreur est survenue lors de l'analyse."
        }) + '\n'


gemini_client = GeminiClient(api_key)
        
@app.route('/')
def home():
    return render_template('index.html')



@app.route('/ask', methods=['POST'])
def ask():
  # À remplacer par votre clé API
    question = request.json.get('question')
    model_name = "gemini-2.0-flash-thinking-exp-01-21"
    
    try:
        response = gemini_client.get_response(question, model_name)
        return Response(
            stream_with_context(stream_response(response)),
            mimetype='text/event-stream'
        )
    except Exception as e:
        logger.error(f"Erreur lors de la génération: {e}", exc_info=True)
        return jsonify({'error': "Une erreur est survenue. Veuillez réessayer."}), 500

if __name__ == '__main__':
    app.run(debug=True)