import os from embedchain import Pipeline as App import gradio as gr token=os.environ.get("TOKEN") os.environ["GOOGLE_API_KEY"] = token app = App.from_config(config={ "llm": { "provider": "google", "config": { "model": "gemini-pro", "temperature": 0.5, "max_tokens": 1000, "top_p": 1, "stream": False, }, }, "embedder": { "provider": "huggingface", "config": { "model": "hkunlp/instructor-large", }, }, "chunker": { "chunk_size": 17000, "chunk_overlap": 0, "length_function": "len", }, }) app.add('https://33bbf3d5-c3fe-409d-a723-d22ea129e9a0.usrfiles.com/ugd/33bbf3_a21b940230be4adbb8be48927b9dc92b.pdf', data_type='pdf_file') link = "https://youtu.be/PbX2t2bEgxg?si=-iK6g9uAhYEE-zU3" #app.add("https://youtu.be/PbX2t2bEgxg?si=-iK6g9uAhYEE-zU3",data_type="youtube_video") def query(message, history): return app.chat(message) demo = gr.ChatInterface(query) demo.launch()