LegalS / app.py
Docfile's picture
Update app.py
be48fa7 verified
import streamlit as st
import os
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Settings,
PromptTemplate,
QueryBundle,
)
from llama_index.llms.gemini import Gemini
from llama_index.embeddings.gemini import GeminiEmbedding
from llama_index.core import get_response_synthesizer
from llama_index.core.node_parser import SemanticSplitterNodeParser
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.indices.query.query_transform import HyDEQueryTransform
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import load_index_from_storage
from llama_index.core import StorageContext
from llama_index.core.retrievers import QueryFusionRetriever
from dotenv import load_dotenv
import logging
import google.generativeai as genai
from pathlib import Path
load_dotenv()
# Set logging level
logging.basicConfig(level=logging.INFO)
# Configure Gemini Pro
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model_gemini_pro_vision = "gemini-pro-vision"
model_gemini_pro = "gemini-pro"
# Configure Gemini models
Settings.llm = Gemini(models=model_gemini_pro, api_key=os.getenv("GOOGLE_API_KEY"))
Settings.embed_model = GeminiEmbedding(
model_name="models/embedding-001",
api_key=os.getenv("GOOGLE_API_KEY")
)
# Function to create a Semantic Splitter Node Parser
def create_semantic_splitter_node_parser():
"""Creates a semantic splitter."""
return SemanticSplitterNodeParser(
buffer_size=1, breakpoint_percentile_threshold=95, embed_model=Settings.embed_model
)
def load_and_index_pdf(pdf_path):
"""Loads and index the pdf.
Args :
pdf_path (str) : The path to the pdf file
Returns :
index (llama_index.core.VectorStoreIndex): The vector index
"""
try:
logging.info(f"Loading PDF document from: {pdf_path}")
documents = SimpleDirectoryReader(input_files=[pdf_path]).load_data()
if documents:
logging.info("Creating vector store index")
index = VectorStoreIndex.from_documents(documents, node_parser=create_semantic_splitter_node_parser())
return index
else:
logging.warning("No documents found in the PDF")
return None
except Exception as e:
logging.error(f"Error loading and indexing PDF: {e}")
return None
def create_rag_pipeline(index):
"""Creates a RAG pipeline for translation.
Args :
index (llama_index.core.VectorStoreIndex): The vector index.
Returns :
query_engine(llama_index.core.query_engine.RetrieverQueryEngine): The query engine
"""
logging.info("Initializing RAG Pipeline components")
# setup retriever
retriever = index.as_retriever(similarity_top_k=5)
# setup query transformer
hyde_query_transform = HyDEQueryTransform(llm=Settings.llm)
# setup reranker
reranker = SentenceTransformerRerank(top_n=3, model="BAAI/bge-reranker-base")
# response_synthesizer
response_synthesizer = get_response_synthesizer(
response_mode="refine",
)
# setup query engine
query_engine = RetrieverQueryEngine(
retriever=retriever,
response_synthesizer=response_synthesizer,
node_postprocessors=[reranker],
query_transform= hyde_query_transform
)
logging.info("RAG Pipeline is configured.")
return query_engine
def translate_text(french_text, query_engine):
"""Translates french text to Yipunu using a highly optimized RAG.
Args :
french_text (str): The french text to translate.
query_engine (llama_index.core.query_engine.RetrieverQueryEngine): The query engine.
Returns:
(str): The yipunu translation or an error message.
"""
try:
logging.info(f"Initiating translation of: {french_text}")
template = (
"Tu es un excellent traducteur du français vers le yipunu. Tu traduis le texte sans donner d'explication. "
"Texte: {french_text} "
"Traduction:"
)
prompt_template = PromptTemplate(template)
query_bundle = QueryBundle(french_text, custom_prompt=prompt_template)
response = query_engine.query(query_bundle)
logging.info(f"Translation Result: {response.response}")
return response.response
except Exception as e:
logging.error(f"Error during translation: {e}")
return f"Error during translation: {str(e)}"
def main():
"""Main function for streamlit app."""
st.title("French to Yipunu Translation App")
# Construct the path to the PDF in the data folder
default_pdf_path = Path("data/parlons_yipunu.pdf")
# Check if the default pdf_file exists.
if default_pdf_path.exists():
index = load_and_index_pdf(str(default_pdf_path))
if index:
query_engine = create_rag_pipeline(index)
french_text = st.text_area("Enter French Text:", "Ni vosi yipunu")
if st.button("Translate"):
translation = translate_text(french_text, query_engine)
st.success(f"Yipunu Translation: {translation}")
else:
# PDF File Upload
uploaded_file = st.file_uploader("Upload a PDF file containing the Punu grammar:", type="pdf")
if uploaded_file is not None:
# Save file to a temporary location
temp_file_path = Path("temp_file.pdf")
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.read())
index = load_and_index_pdf(str(temp_file_path))
if index:
query_engine = create_rag_pipeline(index)
french_text = st.text_area("Enter French Text:", "Ni vosi yipunu")
if st.button("Translate"):
translation = translate_text(french_text, query_engine)
st.success(f"Yipunu Translation: {translation}")
# Clean up temp files
os.remove(temp_file_path)
else:
st.info("Please upload a pdf containing the punu grammar.")
if __name__ == "__main__":
main()