Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,90 +2,62 @@ from flask import Flask, request, render_template, send_from_directory
|
|
2 |
import google.generativeai as genai
|
3 |
import os
|
4 |
from PIL import Image
|
5 |
-
import io
|
6 |
import subprocess
|
7 |
import uuid
|
8 |
import re
|
9 |
import tempfile
|
|
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
-
app.config['UPLOAD_FOLDER'] = 'uploads'
|
13 |
-
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
14 |
-
|
15 |
-
# Configuration de l'API Gemini
|
16 |
-
token = os.environ.get("TOKEN")
|
17 |
-
if not token:
|
18 |
-
raise ValueError("La variable d'environnement TOKEN doit être définie.")
|
19 |
-
|
20 |
-
genai.configure(api_key=token)
|
21 |
-
|
22 |
-
generation_config = {
|
23 |
-
"temperature": 1,
|
24 |
-
"top_p": 0.95,
|
25 |
-
"top_k": 64,
|
26 |
-
"max_output_tokens": 8192,
|
27 |
-
}
|
28 |
-
|
29 |
-
safety_settings = [
|
30 |
-
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
31 |
-
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
32 |
-
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
33 |
-
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
34 |
-
]
|
35 |
-
|
36 |
-
mm = """resous cet exercice. tu répondras en détaillant au maximum ton procédé de calcul. réponse attendue uniquement en Latex
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
-
model = genai.GenerativeModel(
|
40 |
-
model_name="gemini-1.5-pro",
|
41 |
-
generation_config=generation_config,
|
42 |
-
safety_settings=safety_settings,
|
43 |
-
)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
@app.route("/", methods=["GET", "POST"])
|
48 |
-
def index():
|
49 |
-
e = ""
|
50 |
-
if request.method == "POST":
|
51 |
-
if "image" not in request.files:
|
52 |
-
e = "Aucune image sélectionnée."
|
53 |
-
else:
|
54 |
-
image_file = request.files["image"]
|
55 |
-
try:
|
56 |
-
with tempfile.NamedTemporaryFile(delete=False) as temp_img:
|
57 |
-
image_file.save(temp_img.name)
|
58 |
-
image = Image.open(temp_img.name)
|
59 |
-
|
60 |
-
response = model.generate_content([mm, image])
|
61 |
-
latex_code = response.text
|
62 |
-
os.remove(temp_img.name)
|
63 |
-
|
64 |
-
match = re.search(r"\\chemfig\{(.*?)\}", latex_code, re.DOTALL)
|
65 |
-
if match:
|
66 |
-
chemfig_code = match.group(1)
|
67 |
-
try:
|
68 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
69 |
-
svg_filename = generate_svg_from_chemfig(chemfig_code, tmpdirname)
|
70 |
-
e = f'<img src="/uploads/{svg_filename}" alt="Structure chimique">'
|
71 |
-
except Exception as svg_error:
|
72 |
-
e = f"Erreur lors de la génération de l'image SVG : {str(svg_error)}"
|
73 |
-
elif any(keyword in latex_code.lower() for keyword in ['.pdf', '.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg']):
|
74 |
-
e = "Désolé, les images et les PDF ne sont pas encore pris en charge dans la réponse."
|
75 |
-
else:
|
76 |
-
e = latex_code
|
77 |
-
|
78 |
-
|
79 |
-
except Exception as img_err:
|
80 |
-
e = f"Erreur lors du traitement de l'image: {str(img_err)}"
|
81 |
-
|
82 |
-
return render_template("index.html", e=e)
|
83 |
|
|
|
|
|
84 |
|
85 |
def generate_svg_from_chemfig(chemfig_code, tmpdirname):
|
86 |
unique_id = str(uuid.uuid4())
|
87 |
-
tex_filename =
|
88 |
-
pdf_filename =
|
89 |
svg_filename = f"chem_{unique_id}.svg"
|
90 |
|
91 |
tex_content = f"""\\documentclass[margin=10pt]{{standalone}}
|
@@ -94,21 +66,63 @@ def generate_svg_from_chemfig(chemfig_code, tmpdirname):
|
|
94 |
\\chemfig{{{chemfig_code}}}
|
95 |
\\end{{document}}"""
|
96 |
|
97 |
-
|
98 |
-
tex_file.write(tex_content)
|
99 |
|
100 |
try:
|
101 |
-
subprocess.run(["pdflatex", "-interaction=nonstopmode", tex_filename],
|
102 |
-
|
|
|
|
|
103 |
return svg_filename
|
104 |
except subprocess.CalledProcessError as e:
|
105 |
-
raise Exception(f"
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
@app.route('/uploads/<filename>')
|
109 |
def uploaded_file(filename):
|
110 |
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
|
111 |
|
112 |
-
|
113 |
if __name__ == "__main__":
|
114 |
app.run(debug=True)
|
|
|
2 |
import google.generativeai as genai
|
3 |
import os
|
4 |
from PIL import Image
|
|
|
5 |
import subprocess
|
6 |
import uuid
|
7 |
import re
|
8 |
import tempfile
|
9 |
+
from pathlib import Path
|
10 |
|
11 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Configuration constants
|
14 |
+
UPLOAD_FOLDER = Path('uploads')
|
15 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
16 |
+
|
17 |
+
# Create uploads directory if it doesn't exist
|
18 |
+
UPLOAD_FOLDER.mkdir(exist_ok=True)
|
19 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
20 |
+
|
21 |
+
# Gemini API configuration
|
22 |
+
def configure_gemini():
|
23 |
+
token = os.environ.get("TOKEN")
|
24 |
+
if not token:
|
25 |
+
raise ValueError("Environment variable TOKEN must be set.")
|
26 |
+
|
27 |
+
genai.configure(api_key=token)
|
28 |
+
|
29 |
+
generation_config = {
|
30 |
+
"temperature": 1,
|
31 |
+
"top_p": 0.95,
|
32 |
+
"top_k": 64,
|
33 |
+
"max_output_tokens": 8192,
|
34 |
+
}
|
35 |
+
|
36 |
+
safety_settings = [
|
37 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
38 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
39 |
+
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
40 |
+
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
41 |
+
]
|
42 |
+
|
43 |
+
return genai.GenerativeModel(
|
44 |
+
model_name="gemini-1.5-pro",
|
45 |
+
generation_config=generation_config,
|
46 |
+
safety_settings=safety_settings,
|
47 |
+
)
|
48 |
+
|
49 |
+
PROMPT_TEMPLATE = """
|
50 |
+
Résous cet exercice. Tu répondras en détaillant au maximum ton procédé de calcul.
|
51 |
+
Réponse attendue uniquement en LaTeX
|
52 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
def allowed_file(filename):
|
55 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
56 |
|
57 |
def generate_svg_from_chemfig(chemfig_code, tmpdirname):
|
58 |
unique_id = str(uuid.uuid4())
|
59 |
+
tex_filename = Path(tmpdirname) / f"chem_{unique_id}.tex"
|
60 |
+
pdf_filename = Path(tmpdirname) / f"chem_{unique_id}.pdf"
|
61 |
svg_filename = f"chem_{unique_id}.svg"
|
62 |
|
63 |
tex_content = f"""\\documentclass[margin=10pt]{{standalone}}
|
|
|
66 |
\\chemfig{{{chemfig_code}}}
|
67 |
\\end{{document}}"""
|
68 |
|
69 |
+
tex_filename.write_text(tex_content)
|
|
|
70 |
|
71 |
try:
|
72 |
+
subprocess.run(["pdflatex", "-interaction=nonstopmode", str(tex_filename)],
|
73 |
+
check=True, cwd=tmpdirname)
|
74 |
+
subprocess.run(["pdf2svg", str(pdf_filename),
|
75 |
+
str(UPLOAD_FOLDER / svg_filename)], check=True)
|
76 |
return svg_filename
|
77 |
except subprocess.CalledProcessError as e:
|
78 |
+
raise Exception(f"LaTeX compilation or SVG conversion error: {e}")
|
79 |
+
|
80 |
+
@app.route("/", methods=["GET", "POST"])
|
81 |
+
def index():
|
82 |
+
if request.method != "POST":
|
83 |
+
return render_template("index.html", e="")
|
84 |
|
85 |
+
if "image" not in request.files:
|
86 |
+
return render_template("index.html", e="No image selected.")
|
87 |
+
|
88 |
+
image_file = request.files["image"]
|
89 |
+
if not image_file or not allowed_file(image_file.filename):
|
90 |
+
return render_template("index.html", e="Invalid file type. Please upload PNG or JPG.")
|
91 |
+
|
92 |
+
try:
|
93 |
+
model = configure_gemini()
|
94 |
+
|
95 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_img:
|
96 |
+
image_file.save(temp_img.name)
|
97 |
+
image = Image.open(temp_img.name)
|
98 |
+
|
99 |
+
response = model.generate_content([PROMPT_TEMPLATE, image])
|
100 |
+
latex_code = response.text
|
101 |
+
os.unlink(temp_img.name)
|
102 |
+
|
103 |
+
# Handle chemfig diagrams
|
104 |
+
match = re.search(r"\\chemfig\{(.*?)\}", latex_code, re.DOTALL)
|
105 |
+
if match:
|
106 |
+
chemfig_code = match.group(1)
|
107 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
108 |
+
svg_filename = generate_svg_from_chemfig(chemfig_code, tmpdirname)
|
109 |
+
return render_template("index.html",
|
110 |
+
e=f'<img src="/uploads/{svg_filename}" alt="Chemical structure">')
|
111 |
+
|
112 |
+
# Block potentially unsafe content
|
113 |
+
if any(keyword in latex_code.lower() for keyword in
|
114 |
+
['.pdf', '.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg']):
|
115 |
+
return render_template("index.html",
|
116 |
+
e="Sorry, images and PDFs are not yet supported in the response.")
|
117 |
+
|
118 |
+
return render_template("index.html", e=latex_code)
|
119 |
+
|
120 |
+
except Exception as error:
|
121 |
+
return render_template("index.html", e=f"Error processing request: {str(error)}")
|
122 |
|
123 |
@app.route('/uploads/<filename>')
|
124 |
def uploaded_file(filename):
|
125 |
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
|
126 |
|
|
|
127 |
if __name__ == "__main__":
|
128 |
app.run(debug=True)
|