from flask import Flask, request, render_template, send_from_directory import google.generativeai as genai import os from PIL import Image import io import subprocess import uuid import re import tempfile app = Flask(__name__) app.config['UPLOAD_FOLDER'] = 'uploads' os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) # Configuration de l'API Gemini token = os.environ.get("TOKEN") if not token: raise ValueError("La variable d'environnement TOKEN doit être définie.") genai.configure(api_key=token) generation_config = { "temperature": 1, "top_p": 0.95, "top_k": 64, "max_output_tokens": 8192, } safety_settings = [ {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"}, {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"}, {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"}, ] mm = """resous cet exercice. tu répondras en détaillant au maximum ton procédé de calcul. réponse attendue uniquement en Latex """ model = genai.GenerativeModel( model_name="gemini-1.5-pro", generation_config=generation_config, safety_settings=safety_settings, ) @app.route("/", methods=["GET", "POST"]) def index(): e = "" if request.method == "POST": if "image" not in request.files: e = "Aucune image sélectionnée." else: image_file = request.files["image"] try: with tempfile.NamedTemporaryFile(delete=False) as temp_img: image_file.save(temp_img.name) image = Image.open(temp_img.name) response = model.generate_content([mm, image]) latex_code = response.text os.remove(temp_img.name) match = re.search(r"\\chemfig\{(.*?)\}", latex_code, re.DOTALL) if match: chemfig_code = match.group(1) try: with tempfile.TemporaryDirectory() as tmpdirname: svg_filename = generate_svg_from_chemfig(chemfig_code, tmpdirname) e = f'Structure chimique' except Exception as svg_error: e = f"Erreur lors de la génération de l'image SVG : {str(svg_error)}" elif any(keyword in latex_code.lower() for keyword in ['.pdf', '.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg']): e = "Désolé, les images et les PDF ne sont pas encore pris en charge dans la réponse." else: e = latex_code except Exception as img_err: e = f"Erreur lors du traitement de l'image: {str(img_err)}" return render_template("index.html", e=e) def generate_svg_from_chemfig(chemfig_code, tmpdirname): unique_id = str(uuid.uuid4()) tex_filename = os.path.join(tmpdirname, f"chem_{unique_id}.tex") pdf_filename = os.path.join(tmpdirname, f"chem_{unique_id}.pdf") svg_filename = f"chem_{unique_id}.svg" tex_content = f"""\\documentclass[margin=10pt]{{standalone}} \\usepackage{{chemfig}} \\begin{{document}} \\chemfig{{{chemfig_code}}} \\end{{document}}""" with open(tex_filename, "w") as tex_file: tex_file.write(tex_content) try: subprocess.run(["pdflatex", "-interaction=nonstopmode", tex_filename], check=True, cwd=tmpdirname) subprocess.run(["pdf2svg", pdf_filename, os.path.join(app.config['UPLOAD_FOLDER'], svg_filename)], check=True) return svg_filename except subprocess.CalledProcessError as e: raise Exception(f"Erreur lors de la compilation LaTeX ou de la conversion en SVG : {e}") @app.route('/uploads/') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) if __name__ == "__main__": app.run(debug=True)