Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from google import genai
|
3 |
+
from google.genai import types
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
import time
|
8 |
+
import json
|
9 |
+
|
10 |
+
# Configuration de l'API Gemini
|
11 |
+
GOOGLE_API_KEY = "YOUR_API_KEY" # Remplacez par votre clé API
|
12 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
13 |
+
client = genai.GenerativeModel('gemini-pro-vision')
|
14 |
+
|
15 |
+
# Fonction pour générer la réponse en streaming
|
16 |
+
def solve_math_problem(image_data):
|
17 |
+
img = Image.open(io.BytesIO(image_data))
|
18 |
+
|
19 |
+
# Convertir l'image en base64 pour l'envoyer à l'API Gemini
|
20 |
+
buffered = io.BytesIO()
|
21 |
+
img.save(buffered, format="PNG")
|
22 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
23 |
+
|
24 |
+
# Créer le contenu de la requête pour l'API Gemini
|
25 |
+
contents = [
|
26 |
+
{'parts': [{'mime_type': 'image/png', 'data': img_str}]},
|
27 |
+
{'parts': [{'text': "Résous ce problème?"}]},
|
28 |
+
]
|
29 |
+
|
30 |
+
# Configuration pour inclure les pensées (si disponible)
|
31 |
+
config = {
|
32 |
+
'thinking_config': {'include_thoughts': True}
|
33 |
+
}
|
34 |
+
|
35 |
+
response_stream = client.generate_content(
|
36 |
+
contents=contents,
|
37 |
+
model="gemini-2.0-flash-thinking-exp-01-21",
|
38 |
+
stream=True,
|
39 |
+
generation_config=config
|
40 |
+
)
|
41 |
+
|
42 |
+
for chunk in response_stream:
|
43 |
+
for part in chunk.parts:
|
44 |
+
if part.text:
|
45 |
+
yield part.text
|
46 |
+
|
47 |
+
# Interface Streamlit
|
48 |
+
st.set_page_config(page_title="Mariam M-0", page_icon="🧮", layout="centered")
|
49 |
+
|
50 |
+
st.title("Mariam M-0")
|
51 |
+
st.subheader("Solution Mathématique Intelligente")
|
52 |
+
|
53 |
+
uploaded_file = st.file_uploader("Déposez votre image ici", type=["jpg", "jpeg", "png"])
|
54 |
+
|
55 |
+
if uploaded_file is not None:
|
56 |
+
image_data = uploaded_file.getvalue()
|
57 |
+
st.image(image_data, caption="Image téléchargée.", use_column_width=True)
|
58 |
+
|
59 |
+
if st.button("Résoudre le problème"):
|
60 |
+
with st.spinner("Analyse en cours..."):
|
61 |
+
# Utilisation d'un conteneur pour mettre à jour le texte en streaming
|
62 |
+
thoughts_container = st.empty()
|
63 |
+
answer_container = st.empty()
|
64 |
+
full_thoughts = ""
|
65 |
+
full_answer = ""
|
66 |
+
|
67 |
+
for response_text in solve_math_problem(image_data):
|
68 |
+
try:
|
69 |
+
response_json = json.loads(response_text)
|
70 |
+
# Vérifier si la réponse contient une clé 'thoughts' ou 'answer'
|
71 |
+
if 'thoughts' in response_json:
|
72 |
+
thoughts_content = response_json['thoughts']
|
73 |
+
full_thoughts += thoughts_content + " \n"
|
74 |
+
thoughts_container.markdown(f"**Processus de Réflexion:**\n\n{full_thoughts}")
|
75 |
+
elif 'answer' in response_json:
|
76 |
+
answer_content = response_json['answer']
|
77 |
+
full_answer += answer_content + " \n"
|
78 |
+
answer_container.markdown(f"**Solution:**\n\n{full_answer}")
|
79 |
+
except json.JSONDecodeError:
|
80 |
+
print(f"Could not parse as JSON: {response_text}")
|
81 |
+
continue
|
82 |
+
|
83 |
+
|
84 |
+
st.success("Problème résolu!")
|