|
import logging |
|
import sys |
|
import gradio as gr |
|
import asyncio |
|
import nest_asyncio |
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO) |
|
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) |
|
|
|
from llama_index.core import ( |
|
ServiceContext, |
|
SimpleDirectoryReader, |
|
StorageContext, |
|
VectorStoreIndex, |
|
set_global_service_context, |
|
) |
|
|
|
|
|
|
|
|
|
from langchain_community.embeddings import HuggingFaceInstructEmbeddings |
|
|
|
|
|
from g4f import Provider, models |
|
from langchain.llms.base import LLM |
|
from llama_index.llms.langchain import LangChainLLM |
|
from langchain_g4f import G4FLLM |
|
|
|
nest_asyncio.apply() |
|
""" |
|
documents = SimpleDirectoryReader('data').load_data() |
|
model_kwargs = {'device': 'cpu'} |
|
encode_kwargs = {'normalize_embeddings': True} |
|
embed_model = HuggingFaceInstructEmbeddings( |
|
model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs |
|
) |
|
|
|
""" |
|
|
|
|
|
|
|
model_name = "hkunlp/instructor-large" |
|
model_kwargs = {'device': 'cpu'} |
|
encode_kwargs = {'normalize_embeddings': True} |
|
embed_model = HuggingFaceInstructEmbeddings( |
|
model_name=model_name, |
|
model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs |
|
) |
|
llm= LLM = G4FLLM( |
|
model=models.gpt_35_turbo, |
|
provider=Provider.ChatgptAi, |
|
) |
|
|
|
llm = LangChainLLM(llm=llm) |
|
|
|
service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model) |
|
|
|
index = VectorStoreIndex.from_documents(documents, service_context=service_context) |
|
|
|
|
|
async def main(query): |
|
|
|
query_engine = index.as_query_engine() |
|
response = query_engine.query(query) |
|
print(response) |
|
return response |
|
|
|
iface = gr.Interface(fn=main, inputs="text", outputs="text") |
|
iface.launch() |
|
|