Qaz2 / app.py
Docfile's picture
Update app.py
6227b47 verified
import logging
import sys
import gradio as gr
import asyncio
import nest_asyncio
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
ServiceContext,
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
set_global_service_context,
)
#from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
#from llama_index.embeddings.huggingface import HuggingFaceInstructEmbeddings
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from g4f import Provider, models
from langchain.llms.base import LLM
from llama_index.llms.langchain import LangChainLLM
from langchain_g4f import G4FLLM
nest_asyncio.apply()
"""
documents = SimpleDirectoryReader('data').load_data()
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embed_model = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
#from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embed_model = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
llm= LLM = G4FLLM(
model=models.gpt_35_turbo,
provider=Provider.ChatgptAi,
)
llm = LangChainLLM(llm=llm)
service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
async def main(query):
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(response)
return response
iface = gr.Interface(fn=main, inputs="text", outputs="text")
iface.launch()