Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,8 @@ logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
|
9 |
|
10 |
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
11 |
from llama_index.llms import HuggingFaceLLM
|
12 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
13 |
from g4f import Provider, models
|
14 |
from langchain.llms.base import LLM
|
15 |
from llama_index.llms import LangChainLLM
|
@@ -18,9 +19,11 @@ from langchain_g4f import G4FLLM
|
|
18 |
nest_asyncio.apply()
|
19 |
|
20 |
documents = SimpleDirectoryReader('data').load_data()
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
)
|
25 |
llm= LLM = G4FLLM(
|
26 |
model=models.gpt_35_turbo,
|
|
|
9 |
|
10 |
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
11 |
from llama_index.llms import HuggingFaceLLM
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
|
13 |
+
|
14 |
from g4f import Provider, models
|
15 |
from langchain.llms.base import LLM
|
16 |
from llama_index.llms import LangChainLLM
|
|
|
19 |
nest_asyncio.apply()
|
20 |
|
21 |
documents = SimpleDirectoryReader('data').load_data()
|
22 |
+
model_kwargs = {'device': 'cpu'}
|
23 |
+
encode_kwargs = {'normalize_embeddings': True}
|
24 |
+
embed_model = HuggingFaceInstructEmbeddings(
|
25 |
+
model_name="hkunlp/instructor-large", model_kwargs=model_kwargs,
|
26 |
+
encode_kwargs=encode_kwargs
|
27 |
)
|
28 |
llm= LLM = G4FLLM(
|
29 |
model=models.gpt_35_turbo,
|