Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ from g4f import Provider, models
|
|
3 |
from langchain.llms.base import LLM
|
4 |
import asyncio
|
5 |
import nest_asyncio
|
|
|
|
|
6 |
from llama_index import ServiceContext, LLMPredictor, PromptHelper
|
7 |
from llama_index.text_splitter import TokenTextSplitter
|
8 |
from llama_index.node_parser import SimpleNodeParser
|
@@ -10,6 +12,16 @@ from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbed
|
|
10 |
from llama_index import SimpleDirectoryReader, VectorStoreIndex
|
11 |
from gradio import Interface
|
12 |
nest_asyncio.apply()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
embed_model = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
|
15 |
model_kwargs={"device": "cpu"})
|
@@ -25,9 +37,8 @@ prompt_helper = PromptHelper(
|
|
25 |
from langchain_g4f import G4FLLM
|
26 |
|
27 |
async def main(question):
|
28 |
-
llm
|
29 |
-
|
30 |
-
provider=Provider.DeepAi,
|
31 |
)
|
32 |
from llama_index.llms import LangChainLLM
|
33 |
|
|
|
3 |
from langchain.llms.base import LLM
|
4 |
import asyncio
|
5 |
import nest_asyncio
|
6 |
+
from langchain.callbacks.manager import CallbackManager
|
7 |
+
from langchain.llms import LlamaCpp
|
8 |
from llama_index import ServiceContext, LLMPredictor, PromptHelper
|
9 |
from llama_index.text_splitter import TokenTextSplitter
|
10 |
from llama_index.node_parser import SimpleNodeParser
|
|
|
12 |
from llama_index import SimpleDirectoryReader, VectorStoreIndex
|
13 |
from gradio import Interface
|
14 |
nest_asyncio.apply()
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
|
17 |
+
model_name_or_path = "hlhr202/llama-7B-ggml-int4"
|
18 |
+
model_basename = "ggml-model-q4_0.bin" # the model is in bin format
|
19 |
+
|
20 |
+
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
21 |
+
|
22 |
+
n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
|
23 |
+
n_batch = 256
|
24 |
+
|
25 |
|
26 |
embed_model = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
|
27 |
model_kwargs={"device": "cpu"})
|
|
|
37 |
from langchain_g4f import G4FLLM
|
38 |
|
39 |
async def main(question):
|
40 |
+
llm = LlamaCpp(
|
41 |
+
model_path=model_path, callbacks=[StreamingStdOutCallbackHandler()]
|
|
|
42 |
)
|
43 |
from llama_index.llms import LangChainLLM
|
44 |
|