Docfile commited on
Commit
a989b3a
Β·
1 Parent(s): ec737c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -7,13 +7,14 @@ from llama_index import ServiceContext, LLMPredictor, PromptHelper
7
  from llama_index.text_splitter import TokenTextSplitter
8
  from llama_index.node_parser import SimpleNodeParser
9
  from langchain.embeddings import HuggingFaceEmbeddings
10
- from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex
11
  from gradio import Interface
12
  nest_asyncio.apply()
13
 
14
  embed_model = HuggingFaceEmbeddings(
15
  model_name="sentence-transformers/all-mpnet-base-v2"
16
  )
 
17
  node_parser = SimpleNodeParser.from_defaults(text_splitter=TokenTextSplitter(chunk_size=1024, chunk_overlap=20))
18
  prompt_helper = PromptHelper(
19
  context_window=4096,
@@ -21,7 +22,7 @@ prompt_helper = PromptHelper(
21
  chunk_overlap_ratio=0.1,
22
  chunk_size_limit=None
23
  )
24
-
25
  from langchain_g4f import G4FLLM
26
 
27
  async def main(question):
@@ -34,12 +35,10 @@ async def main(question):
34
  llm = LangChainLLM(llm=llm)
35
 
36
  service_context = ServiceContext.from_defaults(llm=llm,
37
- embed_model=embed_model,
38
- node_parser=node_parser,
39
- prompt_helper=prompt_helper)
40
 
41
  documents = SimpleDirectoryReader("data/").load_data()
42
- index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
43
  query_engine = index.as_query_engine(service_context=service_context)
44
  response = query_engine.query(question)
45
  print(response)
 
7
  from llama_index.text_splitter import TokenTextSplitter
8
  from llama_index.node_parser import SimpleNodeParser
9
  from langchain.embeddings import HuggingFaceEmbeddings
10
+ from llama_index import SimpleDirectoryReader, VectorStoreIndex
11
  from gradio import Interface
12
  nest_asyncio.apply()
13
 
14
  embed_model = HuggingFaceEmbeddings(
15
  model_name="sentence-transformers/all-mpnet-base-v2"
16
  )
17
+ """
18
  node_parser = SimpleNodeParser.from_defaults(text_splitter=TokenTextSplitter(chunk_size=1024, chunk_overlap=20))
19
  prompt_helper = PromptHelper(
20
  context_window=4096,
 
22
  chunk_overlap_ratio=0.1,
23
  chunk_size_limit=None
24
  )
25
+ """
26
  from langchain_g4f import G4FLLM
27
 
28
  async def main(question):
 
35
  llm = LangChainLLM(llm=llm)
36
 
37
  service_context = ServiceContext.from_defaults(llm=llm,
38
+ embed_model=embed_model)
 
 
39
 
40
  documents = SimpleDirectoryReader("data/").load_data()
41
+ index = VectorStoreIndex.from_documents(documents, service_context=service_context)
42
  query_engine = index.as_query_engine(service_context=service_context)
43
  response = query_engine.query(question)
44
  print(response)