Update app.py
Browse files
app.py
CHANGED
@@ -21,10 +21,10 @@ from huggingface_hub import hf_hub_download
|
|
21 |
model_name_or_path = "hlhr202/llama-7B-ggml-int4"
|
22 |
model_basename = "ggml-model-q4_0.bin" # the model is in bin format
|
23 |
|
24 |
-
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
25 |
|
26 |
n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
|
27 |
-
n_batch = 256
|
28 |
|
29 |
|
30 |
embed_model = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
|
@@ -39,25 +39,24 @@ prompt_helper = PromptHelper(
|
|
39 |
)
|
40 |
"""
|
41 |
from langchain_g4f import G4FLLM
|
42 |
-
|
43 |
-
async def main(question):
|
44 |
-
llm : LLM = G4FLLM(
|
45 |
model=models.gpt_35_turbo,
|
46 |
-
provider=Provider.Acytoo,
|
47 |
-
)
|
48 |
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
embed_model=embed_model)
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
query_engine = index.as_query_engine(service_context=service_context)
|
58 |
response = query_engine.query(question)
|
59 |
print(response)
|
60 |
return response
|
61 |
|
62 |
iface = Interface(fn=main, inputs="text", outputs="text")
|
63 |
-
iface.launch()
|
|
|
21 |
model_name_or_path = "hlhr202/llama-7B-ggml-int4"
|
22 |
model_basename = "ggml-model-q4_0.bin" # the model is in bin format
|
23 |
|
24 |
+
#model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
25 |
|
26 |
n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
|
27 |
+
n_batch = 256
|
28 |
|
29 |
|
30 |
embed_model = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
|
|
|
39 |
)
|
40 |
"""
|
41 |
from langchain_g4f import G4FLLM
|
42 |
+
llm = LLM = G4FLLM(
|
|
|
|
|
43 |
model=models.gpt_35_turbo,
|
44 |
+
provider=Provider.Acytoo,)
|
|
|
45 |
|
46 |
|
47 |
+
llm = LangChainLLM(llm=llm)
|
48 |
|
49 |
+
service_context = ServiceContext.from_defaults(llm=llm,
|
50 |
embed_model=embed_model)
|
51 |
|
52 |
+
documents = SimpleDirectoryReader("data").load_data()
|
53 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
54 |
+
|
55 |
+
async def main(question):
|
56 |
query_engine = index.as_query_engine(service_context=service_context)
|
57 |
response = query_engine.query(question)
|
58 |
print(response)
|
59 |
return response
|
60 |
|
61 |
iface = Interface(fn=main, inputs="text", outputs="text")
|
62 |
+
iface.launch()
|