covid_streamlit / app.py
geographicalcollins's picture
commit changes
709a082
from numpy import cov
import streamlit as st
st.set_page_config(layout = "wide")
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set(style='white',color_codes=True)
from sklearn.metrics import r2_score, median_absolute_error, mean_absolute_error
from sklearn.metrics import median_absolute_error, mean_squared_error, mean_squared_log_error
from scipy.optimize import minimize
import statsmodels.tsa.api as smt
import statsmodels.api as sm
from tqdm import tqdm_notebook
from tqdm.notebook import tqdm
from itertools import product
header=st.container()
dataset=st.container()
data_exploration_with_cleaning=st.container()
features=st.container()
modelTraining=st.container()
covid_relationship=st.container()
mystyle = '''
<style>
.main {
background_color:#FFCCFF;
}
</style>
'''
# @st.cache(allow_output_mutation=True)
def load_data(filename):
covid_data=pd.read_csv(filename)
return covid_data
with header:
st.title('Covid-19 Analysis for predictive analytics')
st.text('Aims to provide appropriate analytics and showcasing the relationship between different diseases and covid 19')
with dataset:
st.subheader('Dataset 1:ISDH - VR or NBS covid dataset as of July 4, 2022, 9:37 PM (UTC+03:00)')
st.subheader('Dataset 2: cdv.gov dataset')
covid_data=load_data('data/covid.csv')
covid_data.rename(columns = {'_id':'id', 'date':'date', 'agegrp':'age_group'},inplace=True)
covid_data['date'] = covid_data['date'].str[:-9]
covid_data['date'] = pd.to_datetime(covid_data['date'])
st.write(covid_data.head(5))
with data_exploration_with_cleaning:
st.subheader('Data exploratory and cleaning')
nRow, nCol = covid_data.shape
st.write('* **Shape of our data is :** ', nRow, nCol )
summary=covid_data.describe()
st.write('* **Statistical summary :** ', summary)
a=covid_data.isnull().sum()
st.write('* **Checking for null values** ', a)
w=covid_data['age_group'].unique()
st.write('* **Age Group categories** ', w)
with features:
st.subheader('Features of the dataset')
covid_data.drop("id", axis=1, inplace=True)
covid_data.to_csv('data/cleaned_data.csv',index=False)
dat=pd.read_csv('data/cleaned_data.csv')
dat['date']= pd.to_datetime(dat['date'])
dat.to_csv('data/cleaned_data.csv',index=False)
data=pd.read_csv('data/cleaned_data.csv',index_col=['date'], parse_dates=['date'])
group1 = data.loc[data['age_group'] == '0-19']
group2 = data.loc[data['age_group'] == '20-29']
group3 = data.loc[data['age_group'] == '30-39']
group4 = data.loc[data['age_group'] == '40-49']
group5 = data.loc[data['age_group'] == '50-59']
group6 = data.loc[data['age_group'] == '60-69']
group7 = data.loc[data['age_group'] == '70-79']
group8 = data.loc[data['age_group'] == '80+']
a=plt.figure(figsize=(17, 8))
plt.plot(group1.covid_deaths)
plt.title('Infection Rate in 0-19 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
b=plt.figure(figsize=(17, 8))
plt.plot(group2.covid_deaths)
plt.title('Infection Rate in 20-29 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
c=plt.figure(figsize=(17, 8))
plt.plot(group3.covid_deaths)
plt.title('Infection Rate in 30-39 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
d=plt.figure(figsize=(17, 8))
plt.plot(group4.covid_deaths)
plt.title('Infection Rate in 40-49 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
e=plt.figure(figsize=(17, 8))
plt.plot(group5.covid_deaths)
plt.title('Infection Rate in 50-59 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
f=plt.figure(figsize=(17, 8))
plt.plot(group6.covid_deaths)
plt.title('Infection Rate in 60-69 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
g=plt.figure(figsize=(17, 8))
plt.plot(group7.covid_deaths)
plt.title('Infection Rate in 70-79 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
h=plt.figure(figsize=(17, 8))
plt.plot(group8.covid_deaths)
plt.title('Infection Rate in 80-89 Years')
plt.ylabel('Number of Infection')
plt.xlabel('Period')
plt.grid(False)
# plt.show()
st.pyplot(a)
st.pyplot(b)
st.pyplot(c)
st.pyplot(d)
st.pyplot(e)
st.pyplot(f)
st.pyplot(g)
st.pyplot(h)
with modelTraining:
st.subheader('model training')
st.write('MODELLING WITH 60-69 years')
def plot_moving_average(series, window, plot_intervals=False, scale=1.96):
rolling_mean = series.rolling(window=window).mean()
aa=plt.figure(figsize=(12,8))
plt.title('Moving average\n window size = {}'.format(window))
plt.plot(rolling_mean, 'g', label='Rolling mean trend')
#Plot confidence intervals for smoothed values
if plot_intervals:
mae = mean_absolute_error(series[window:], rolling_mean[window:])
deviation = np.std(series[window:] - rolling_mean[window:])
lower_bound = rolling_mean - (mae + scale * deviation)
upper_bound = rolling_mean + (mae + scale * deviation)
plt.plot(upper_bound, 'r--', label='Upper bound / Lower bound')
plt.plot(lower_bound, 'r--')
plt.plot(series[window:], label='Actual values')
plt.legend(loc='best')
plt.grid(True)
st.pyplot(aa)
#Smooth by the previous 5 days (by week)
plot_moving_average(group6.covid_deaths, 5)
#Smooth by the previous month (30 days)
plot_moving_average(group6.covid_deaths, 30)
#Smooth by previous quarter (90 days)
plot_moving_average(group6.covid_deaths, 60, plot_intervals=True)
st.write("Using Exponential smoothening")
st.markdown('* Determines how fast the weight decreases from previous observations')
def exponential_smoothing(series, alpha):
result = [series[0]] # first value is same as series
for n in range(1, len(series)):
result.append(alpha * series[n] + (1 - alpha) * result[n-1])
return result
def plot_exponential_smoothing(series, alphas):
bb=plt.figure(figsize=(12, 8))
for alpha in alphas:
plt.plot(exponential_smoothing(series, alpha), label="Alpha {}".format(alpha))
plt.plot(series.values, "c", label = "Actual")
plt.legend(loc="best")
plt.axis('tight')
plt.title("Exponential Smoothing")
plt.grid(True)
st.pyplot(bb)
plot_exponential_smoothing(group6.covid_deaths, [0.05, 0.2])
def double_exponential_smoothing(series, alpha, beta):
result = [series[0]]
for n in range(1, len(series)+1):
if n == 1:
level, trend = series[0], series[1] - series[0]
if n >= len(series): # forecasting
value = result[-1]
else:
value = series[n]
last_level, level = level, alpha * value + (1 - alpha) * (level + trend)
trend = beta * (level - last_level) + (1 - beta) * trend
result.append(level + trend)
return result
def plot_double_exponential_smoothing(series, alphas, betas):
cc=plt.figure(figsize=(17, 8))
for alpha in alphas:
for beta in betas:
plt.plot(double_exponential_smoothing(series, alpha, beta), label="Alpha {}, beta {}".format(alpha, beta))
plt.plot(series.values, label = "Actual")
plt.legend(loc="best")
plt.axis('tight')
plt.title("Double Exponential Smoothing")
plt.grid(True)
st.pyplot(cc)
plot_double_exponential_smoothing(group6.covid_deaths, alphas=[0.9, 0.02], betas=[0.9, 0.02])
st.subheader("USING SARIMA MODEL")
def tsplot(y, lags=None, figsize=(12, 7), style='bmh'):
if not isinstance(y, pd.Series):
y = pd.Series(y)
with plt.style.context(style='bmh'):
fig = plt.figure(figsize=figsize)
layout = (2,2)
ts_ax = plt.subplot2grid(layout, (0,0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1,0))
pacf_ax = plt.subplot2grid(layout, (1,1))
y.plot(ax=ts_ax)
p_value = sm.tsa.stattools.adfuller(y)[1]
ts_ax.set_title('Time Series Analysis Plots\n Dickey-Fuller: p={0:.5f}'.format(p_value))
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax)
plt.tight_layout()
st.pyplot(fig)
tsplot(group6.covid_deaths, lags=30)
# Take the first difference to remove to make the process stationary
data_diff = group6.covid_deaths - group6.covid_deaths.shift(1)
tsplot(data_diff[1:], lags=30)
import warnings
warnings.filterwarnings("ignore",category=FutureWarning)
#Set initial values and some bounds
ps = range(0, 5)
d = 1
qs = range(0, 5)
Ps = range(0, 5)
D = 1
Qs = range(0, 5)
s = 5
#Create a list with all possible combinations of parameters
parameters = product(ps, qs, Ps, Qs)
parameters_list = list(parameters)
len(parameters_list)
# Train many SARIMA models to find the best set of parameters
def optimize_SARIMA(parameters_list, d, D, s):
"""
Return dataframe with parameters and corresponding AIC
parameters_list - list with (p, q, P, Q) tuples
d - integration order
D - seasonal integration order
s - length of season
"""
results = []
best_aic = float('inf')
for param in tqdm_notebook(parameters_list):
try: model = sm.tsa.statespace.SARIMAX(group6.covid_deaths, order=(param[0], d, param[1]),
seasonal_order=(param[2], D, param[3], s)).fit(disp=-1)
except:
continue
aic = model.aic
#Save best model, AIC and parameters
if aic < best_aic:
best_model = model
best_aic = aic
best_param = param
results.append([param, model.aic])
result_table = pd.DataFrame(results)
result_table.columns = ['parameters', 'aic']
#Sort in ascending order, lower AIC is better
result_table = result_table.sort_values(by='aic', ascending=True).reset_index(drop=True)
return result_table
# result_table = optimize_SARIMA(parameters_list, d, D, s)
#Set parameters that give the lowest AIC (Akaike Information Criteria)
# p, q, P, Q = result_table.parameters[0]
best_model = sm.tsa.statespace.SARIMAX(group6.covid_deaths, order=(1, 1, 1),
seasonal_order=(1, 1, 1, 7)).fit(disp=-1)
st.write(best_model.summary())
# with covid_relationship:
st.subheader('Covid Relationship With Other Diseases')
df=pd.read_csv("data/Provisional_COVID-19_Deaths_by_Sex_and_Age.csv")
df['End Date']=pd.to_datetime(df['End Date'])
df['Start Date']=pd.to_datetime(df['Start Date'])
df['Data As Of']=pd.to_datetime(df['Data As Of'])
for col in df.select_dtypes(include=['datetime64']).columns.tolist():
df.style.format({"df[col]":
lambda t:t.strftime("%Y-%m-%d")})
df['Year']=df['Year'].fillna(2020)
df. drop(["Month","Footnote"], axis=1, inplace=True)
df=df.dropna()
Roww, Coll = df.shape
st.write('dataset 2 shape: ', Roww, Coll)
df.index=df['End Date']
df=df[df['Age Group'] !='All Ages']
df.reset_index(drop=True)
df=df[['Year','Sex','Age Group', 'COVID-19 Deaths', 'Pneumonia Deaths', 'Influenza Deaths']]
jj=sns.lmplot('Pneumonia Deaths','COVID-19 Deaths',data=df,fit_reg=True,scatter_kws={'color':'red','marker':"D","s":20})
plt.title("Relationship between Covid 19 and Pneumonia")
st.pyplot(jj)
mm=sns.lmplot('Influenza Deaths','COVID-19 Deaths',data=df,fit_reg=True,scatter_kws={'color':'red','marker':"D","s":20})
plt.title("Relationship between Covid 19 and Influenza")
st.pyplot(mm)
nn=sns.lmplot('Influenza Deaths','Pneumonia Deaths',data=df,fit_reg=True,scatter_kws={'color':'red','marker':"D","s":20})
plt.title("Relationship between Pneumonia and Influenza")
st.pyplot(nn)
df=df[df['Age Group'] !='Under 1 year']
df=df[df['Age Group'] !='0-17 years']
df=df[df['Age Group'] !='18-29 years']
df=df[df['Age Group'] !='30-39 years']
df=df[df['Age Group'] !='40-49 years']
# Finding the most affected Age Group towards Covid 19
df.reset_index(drop=True)
Group_1=df['COVID-19 Deaths'][df['Age Group']=='1-4 years'].to_list()
Group_2=df['COVID-19 Deaths'][df['Age Group']=='5-14 years'].to_list()
Group_3=df['COVID-19 Deaths'][df['Age Group']=='15-24 years'].to_list()
Group_4=df['COVID-19 Deaths'][df['Age Group']=='25-34 years'].to_list()
Group_5=df['COVID-19 Deaths'][df['Age Group']=='35-44 years'].to_list()
Group_6=df['COVID-19 Deaths'][df['Age Group']=='45-54 years'].to_list()
Group_7=df['COVID-19 Deaths'][df['Age Group']=='55-64 years'].to_list()
Group_8=df['COVID-19 Deaths'][df['Age Group']=='65-74 years'].to_list()
Group_9=df['COVID-19 Deaths'][df['Age Group']=='75-84 years'].to_list()
Group_10=df['COVID-19 Deaths'][df['Age Group']=='85 years and over'].to_list()
Infection_rate={'1-4':sum(Group_1),'5-14':sum(Group_2),'15-24':sum(Group_3),'25-34':sum(Group_4),'35-44':sum(Group_5),'45-54':sum(Group_6),'55-64':sum(Group_7),'65-74':sum(Group_8),'75-84':sum(Group_9),'Over 85':sum(Group_10)}
names=list(Infection_rate.keys())
values=list(Infection_rate.values())
vv=plt.figure(figsize=(12, 8))
plt.bar(range(len(Infection_rate)),values,tick_label=names)
plt.xlabel('Age group{Years}')
plt.ylabel('Number of Infections')
plt.title("Covid Infection Rate in various Age group categories")
# plt.show()
st.pyplot(vv)
df.to_csv('data/provisional_data.csv',index=False)
provisional_data=pd.read_csv('data/provisional_data.csv',index_col=['Year'],parse_dates=['Year'])
provisional_data.rename(columns = {'COVID-19 Deaths':'COVID_Deaths', 'Pneumonia Deaths':'Pneumonia_Deaths','Influenza Deaths':'Influenza_Deaths'}, inplace = True)
# Analysis of infection rate per Gender
Male_Covid=provisional_data['COVID_Deaths'][provisional_data['Sex']=='Male'].to_list()
Female_Covid=provisional_data['COVID_Deaths'][provisional_data['Sex']=='Female'].to_list()
Female_Pneumonia=provisional_data['Pneumonia_Deaths'][provisional_data['Sex']=='Female'].to_list()
Male_Pneumonia=provisional_data['Pneumonia_Deaths'][provisional_data['Sex']=='Male'].to_list()
Female_Influenza=provisional_data['Influenza_Deaths'][provisional_data['Sex']=='Female'].to_list()
Male_Influenza=provisional_data['Influenza_Deaths'][provisional_data['Sex']=='Male'].to_list()
Gender_Infection_rate={'F_Covid':sum(Female_Covid),'M_Covid':sum(Male_Covid),'F_Pneum..':sum(Female_Pneumonia),'M_Pneum..':sum(Male_Pneumonia),'F_Influenza':sum(Female_Influenza),'M_Influenza':sum(Male_Influenza)}
names=list(Gender_Infection_rate.keys())
values=list(Gender_Infection_rate.values())
zz=plt.figure()
plt.bar(range(len(Gender_Infection_rate)),values,tick_label=names,color=['black', 'red', 'green', 'blue', 'cyan','pink'],width=0.3)
plt.xlabel('Gender')
plt.ylabel('Number of Infections')
plt.title("Analysis of infection rate per Gender")
# plt.show()
st.pyplot(zz)
# Finding the highest recorded value of detected covid death
provisional_data["COVID_Deaths"].max()
# Finding the highest recorded value of detected Pneumonia_Deaths
provisional_data["Pneumonia_Deaths"].max()
# Finding the highest recorded value of detected Influenza_Deaths
provisional_data["Influenza_Deaths"].max()
st.subheader('Finding Correlation between different diseases')
# The correlation between Covid 19 and Pneumonia
correlation1=provisional_data['COVID_Deaths']. corr(provisional_data['Pneumonia_Deaths'])
st.write('The correlation between Covid 19 and Pneumonia',correlation1)
# The correlation between Covid 19 and Influenza
correlation2=provisional_data['COVID_Deaths']. corr(provisional_data['Influenza_Deaths'])
st.write('The correlation between Covid 19 and Influenza',correlation2)
# The correlation between Pneumonia and Influenza Disease
correlation3=provisional_data['Pneumonia_Deaths']. corr(provisional_data['Influenza_Deaths'])
st.write('The correlation between Pneumonia and Influenza Disease',correlation3)