Spaces:
Runtime error
Runtime error
from numpy import cov | |
import streamlit as st | |
st.set_page_config(layout = "wide") | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import seaborn as sns | |
sns.set(style='white',color_codes=True) | |
from sklearn.metrics import r2_score, median_absolute_error, mean_absolute_error | |
from sklearn.metrics import median_absolute_error, mean_squared_error, mean_squared_log_error | |
from scipy.optimize import minimize | |
import statsmodels.tsa.api as smt | |
import statsmodels.api as sm | |
from tqdm import tqdm_notebook | |
from tqdm.notebook import tqdm | |
from itertools import product | |
header=st.container() | |
dataset=st.container() | |
data_exploration_with_cleaning=st.container() | |
features=st.container() | |
modelTraining=st.container() | |
covid_relationship=st.container() | |
mystyle = ''' | |
<style> | |
.main { | |
background_color:#FFCCFF; | |
} | |
</style> | |
''' | |
# @st.cache(allow_output_mutation=True) | |
def load_data(filename): | |
covid_data=pd.read_csv(filename) | |
return covid_data | |
with header: | |
st.title('Covid-19 Analysis for predictive analytics') | |
st.text('Aims to provide appropriate analytics and showcasing the relationship between different diseases and covid 19') | |
with dataset: | |
st.subheader('Dataset 1:ISDH - VR or NBS covid dataset as of July 4, 2022, 9:37 PM (UTC+03:00)') | |
st.subheader('Dataset 2: cdv.gov dataset') | |
covid_data=load_data('data/covid.csv') | |
covid_data.rename(columns = {'_id':'id', 'date':'date', 'agegrp':'age_group'},inplace=True) | |
covid_data['date'] = covid_data['date'].str[:-9] | |
covid_data['date'] = pd.to_datetime(covid_data['date']) | |
st.write(covid_data.head(5)) | |
with data_exploration_with_cleaning: | |
st.subheader('Data exploratory and cleaning') | |
nRow, nCol = covid_data.shape | |
st.write('* **Shape of our data is :** ', nRow, nCol ) | |
summary=covid_data.describe() | |
st.write('* **Statistical summary :** ', summary) | |
a=covid_data.isnull().sum() | |
st.write('* **Checking for null values** ', a) | |
w=covid_data['age_group'].unique() | |
st.write('* **Age Group categories** ', w) | |
with features: | |
st.subheader('Features of the dataset') | |
covid_data.drop("id", axis=1, inplace=True) | |
covid_data.to_csv('data/cleaned_data.csv',index=False) | |
dat=pd.read_csv('data/cleaned_data.csv') | |
dat['date']= pd.to_datetime(dat['date']) | |
dat.to_csv('data/cleaned_data.csv',index=False) | |
data=pd.read_csv('data/cleaned_data.csv',index_col=['date'], parse_dates=['date']) | |
group1 = data.loc[data['age_group'] == '0-19'] | |
group2 = data.loc[data['age_group'] == '20-29'] | |
group3 = data.loc[data['age_group'] == '30-39'] | |
group4 = data.loc[data['age_group'] == '40-49'] | |
group5 = data.loc[data['age_group'] == '50-59'] | |
group6 = data.loc[data['age_group'] == '60-69'] | |
group7 = data.loc[data['age_group'] == '70-79'] | |
group8 = data.loc[data['age_group'] == '80+'] | |
a=plt.figure(figsize=(17, 8)) | |
plt.plot(group1.covid_deaths) | |
plt.title('Infection Rate in 0-19 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
b=plt.figure(figsize=(17, 8)) | |
plt.plot(group2.covid_deaths) | |
plt.title('Infection Rate in 20-29 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
c=plt.figure(figsize=(17, 8)) | |
plt.plot(group3.covid_deaths) | |
plt.title('Infection Rate in 30-39 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
d=plt.figure(figsize=(17, 8)) | |
plt.plot(group4.covid_deaths) | |
plt.title('Infection Rate in 40-49 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
e=plt.figure(figsize=(17, 8)) | |
plt.plot(group5.covid_deaths) | |
plt.title('Infection Rate in 50-59 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
f=plt.figure(figsize=(17, 8)) | |
plt.plot(group6.covid_deaths) | |
plt.title('Infection Rate in 60-69 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
g=plt.figure(figsize=(17, 8)) | |
plt.plot(group7.covid_deaths) | |
plt.title('Infection Rate in 70-79 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
h=plt.figure(figsize=(17, 8)) | |
plt.plot(group8.covid_deaths) | |
plt.title('Infection Rate in 80-89 Years') | |
plt.ylabel('Number of Infection') | |
plt.xlabel('Period') | |
plt.grid(False) | |
# plt.show() | |
st.pyplot(a) | |
st.pyplot(b) | |
st.pyplot(c) | |
st.pyplot(d) | |
st.pyplot(e) | |
st.pyplot(f) | |
st.pyplot(g) | |
st.pyplot(h) | |
with modelTraining: | |
st.subheader('model training') | |
st.write('MODELLING WITH 60-69 years') | |
def plot_moving_average(series, window, plot_intervals=False, scale=1.96): | |
rolling_mean = series.rolling(window=window).mean() | |
aa=plt.figure(figsize=(12,8)) | |
plt.title('Moving average\n window size = {}'.format(window)) | |
plt.plot(rolling_mean, 'g', label='Rolling mean trend') | |
#Plot confidence intervals for smoothed values | |
if plot_intervals: | |
mae = mean_absolute_error(series[window:], rolling_mean[window:]) | |
deviation = np.std(series[window:] - rolling_mean[window:]) | |
lower_bound = rolling_mean - (mae + scale * deviation) | |
upper_bound = rolling_mean + (mae + scale * deviation) | |
plt.plot(upper_bound, 'r--', label='Upper bound / Lower bound') | |
plt.plot(lower_bound, 'r--') | |
plt.plot(series[window:], label='Actual values') | |
plt.legend(loc='best') | |
plt.grid(True) | |
st.pyplot(aa) | |
#Smooth by the previous 5 days (by week) | |
plot_moving_average(group6.covid_deaths, 5) | |
#Smooth by the previous month (30 days) | |
plot_moving_average(group6.covid_deaths, 30) | |
#Smooth by previous quarter (90 days) | |
plot_moving_average(group6.covid_deaths, 60, plot_intervals=True) | |
st.write("Using Exponential smoothening") | |
st.markdown('* Determines how fast the weight decreases from previous observations') | |
def exponential_smoothing(series, alpha): | |
result = [series[0]] # first value is same as series | |
for n in range(1, len(series)): | |
result.append(alpha * series[n] + (1 - alpha) * result[n-1]) | |
return result | |
def plot_exponential_smoothing(series, alphas): | |
bb=plt.figure(figsize=(12, 8)) | |
for alpha in alphas: | |
plt.plot(exponential_smoothing(series, alpha), label="Alpha {}".format(alpha)) | |
plt.plot(series.values, "c", label = "Actual") | |
plt.legend(loc="best") | |
plt.axis('tight') | |
plt.title("Exponential Smoothing") | |
plt.grid(True) | |
st.pyplot(bb) | |
plot_exponential_smoothing(group6.covid_deaths, [0.05, 0.2]) | |
def double_exponential_smoothing(series, alpha, beta): | |
result = [series[0]] | |
for n in range(1, len(series)+1): | |
if n == 1: | |
level, trend = series[0], series[1] - series[0] | |
if n >= len(series): # forecasting | |
value = result[-1] | |
else: | |
value = series[n] | |
last_level, level = level, alpha * value + (1 - alpha) * (level + trend) | |
trend = beta * (level - last_level) + (1 - beta) * trend | |
result.append(level + trend) | |
return result | |
def plot_double_exponential_smoothing(series, alphas, betas): | |
cc=plt.figure(figsize=(17, 8)) | |
for alpha in alphas: | |
for beta in betas: | |
plt.plot(double_exponential_smoothing(series, alpha, beta), label="Alpha {}, beta {}".format(alpha, beta)) | |
plt.plot(series.values, label = "Actual") | |
plt.legend(loc="best") | |
plt.axis('tight') | |
plt.title("Double Exponential Smoothing") | |
plt.grid(True) | |
st.pyplot(cc) | |
plot_double_exponential_smoothing(group6.covid_deaths, alphas=[0.9, 0.02], betas=[0.9, 0.02]) | |
st.subheader("USING SARIMA MODEL") | |
def tsplot(y, lags=None, figsize=(12, 7), style='bmh'): | |
if not isinstance(y, pd.Series): | |
y = pd.Series(y) | |
with plt.style.context(style='bmh'): | |
fig = plt.figure(figsize=figsize) | |
layout = (2,2) | |
ts_ax = plt.subplot2grid(layout, (0,0), colspan=2) | |
acf_ax = plt.subplot2grid(layout, (1,0)) | |
pacf_ax = plt.subplot2grid(layout, (1,1)) | |
y.plot(ax=ts_ax) | |
p_value = sm.tsa.stattools.adfuller(y)[1] | |
ts_ax.set_title('Time Series Analysis Plots\n Dickey-Fuller: p={0:.5f}'.format(p_value)) | |
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax) | |
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax) | |
plt.tight_layout() | |
st.pyplot(fig) | |
tsplot(group6.covid_deaths, lags=30) | |
# Take the first difference to remove to make the process stationary | |
data_diff = group6.covid_deaths - group6.covid_deaths.shift(1) | |
tsplot(data_diff[1:], lags=30) | |
import warnings | |
warnings.filterwarnings("ignore",category=FutureWarning) | |
#Set initial values and some bounds | |
ps = range(0, 5) | |
d = 1 | |
qs = range(0, 5) | |
Ps = range(0, 5) | |
D = 1 | |
Qs = range(0, 5) | |
s = 5 | |
#Create a list with all possible combinations of parameters | |
parameters = product(ps, qs, Ps, Qs) | |
parameters_list = list(parameters) | |
len(parameters_list) | |
# Train many SARIMA models to find the best set of parameters | |
def optimize_SARIMA(parameters_list, d, D, s): | |
""" | |
Return dataframe with parameters and corresponding AIC | |
parameters_list - list with (p, q, P, Q) tuples | |
d - integration order | |
D - seasonal integration order | |
s - length of season | |
""" | |
results = [] | |
best_aic = float('inf') | |
for param in tqdm_notebook(parameters_list): | |
try: model = sm.tsa.statespace.SARIMAX(group6.covid_deaths, order=(param[0], d, param[1]), | |
seasonal_order=(param[2], D, param[3], s)).fit(disp=-1) | |
except: | |
continue | |
aic = model.aic | |
#Save best model, AIC and parameters | |
if aic < best_aic: | |
best_model = model | |
best_aic = aic | |
best_param = param | |
results.append([param, model.aic]) | |
result_table = pd.DataFrame(results) | |
result_table.columns = ['parameters', 'aic'] | |
#Sort in ascending order, lower AIC is better | |
result_table = result_table.sort_values(by='aic', ascending=True).reset_index(drop=True) | |
return result_table | |
# result_table = optimize_SARIMA(parameters_list, d, D, s) | |
#Set parameters that give the lowest AIC (Akaike Information Criteria) | |
# p, q, P, Q = result_table.parameters[0] | |
best_model = sm.tsa.statespace.SARIMAX(group6.covid_deaths, order=(1, 1, 1), | |
seasonal_order=(1, 1, 1, 7)).fit(disp=-1) | |
st.write(best_model.summary()) | |
# with covid_relationship: | |
st.subheader('Covid Relationship With Other Diseases') | |
df=pd.read_csv("data/Provisional_COVID-19_Deaths_by_Sex_and_Age.csv") | |
df['End Date']=pd.to_datetime(df['End Date']) | |
df['Start Date']=pd.to_datetime(df['Start Date']) | |
df['Data As Of']=pd.to_datetime(df['Data As Of']) | |
for col in df.select_dtypes(include=['datetime64']).columns.tolist(): | |
df.style.format({"df[col]": | |
lambda t:t.strftime("%Y-%m-%d")}) | |
df['Year']=df['Year'].fillna(2020) | |
df. drop(["Month","Footnote"], axis=1, inplace=True) | |
df=df.dropna() | |
Roww, Coll = df.shape | |
st.write('dataset 2 shape: ', Roww, Coll) | |
df.index=df['End Date'] | |
df=df[df['Age Group'] !='All Ages'] | |
df.reset_index(drop=True) | |
df=df[['Year','Sex','Age Group', 'COVID-19 Deaths', 'Pneumonia Deaths', 'Influenza Deaths']] | |
jj=sns.lmplot('Pneumonia Deaths','COVID-19 Deaths',data=df,fit_reg=True,scatter_kws={'color':'red','marker':"D","s":20}) | |
plt.title("Relationship between Covid 19 and Pneumonia") | |
st.pyplot(jj) | |
mm=sns.lmplot('Influenza Deaths','COVID-19 Deaths',data=df,fit_reg=True,scatter_kws={'color':'red','marker':"D","s":20}) | |
plt.title("Relationship between Covid 19 and Influenza") | |
st.pyplot(mm) | |
nn=sns.lmplot('Influenza Deaths','Pneumonia Deaths',data=df,fit_reg=True,scatter_kws={'color':'red','marker':"D","s":20}) | |
plt.title("Relationship between Pneumonia and Influenza") | |
st.pyplot(nn) | |
df=df[df['Age Group'] !='Under 1 year'] | |
df=df[df['Age Group'] !='0-17 years'] | |
df=df[df['Age Group'] !='18-29 years'] | |
df=df[df['Age Group'] !='30-39 years'] | |
df=df[df['Age Group'] !='40-49 years'] | |
# Finding the most affected Age Group towards Covid 19 | |
df.reset_index(drop=True) | |
Group_1=df['COVID-19 Deaths'][df['Age Group']=='1-4 years'].to_list() | |
Group_2=df['COVID-19 Deaths'][df['Age Group']=='5-14 years'].to_list() | |
Group_3=df['COVID-19 Deaths'][df['Age Group']=='15-24 years'].to_list() | |
Group_4=df['COVID-19 Deaths'][df['Age Group']=='25-34 years'].to_list() | |
Group_5=df['COVID-19 Deaths'][df['Age Group']=='35-44 years'].to_list() | |
Group_6=df['COVID-19 Deaths'][df['Age Group']=='45-54 years'].to_list() | |
Group_7=df['COVID-19 Deaths'][df['Age Group']=='55-64 years'].to_list() | |
Group_8=df['COVID-19 Deaths'][df['Age Group']=='65-74 years'].to_list() | |
Group_9=df['COVID-19 Deaths'][df['Age Group']=='75-84 years'].to_list() | |
Group_10=df['COVID-19 Deaths'][df['Age Group']=='85 years and over'].to_list() | |
Infection_rate={'1-4':sum(Group_1),'5-14':sum(Group_2),'15-24':sum(Group_3),'25-34':sum(Group_4),'35-44':sum(Group_5),'45-54':sum(Group_6),'55-64':sum(Group_7),'65-74':sum(Group_8),'75-84':sum(Group_9),'Over 85':sum(Group_10)} | |
names=list(Infection_rate.keys()) | |
values=list(Infection_rate.values()) | |
vv=plt.figure(figsize=(12, 8)) | |
plt.bar(range(len(Infection_rate)),values,tick_label=names) | |
plt.xlabel('Age group{Years}') | |
plt.ylabel('Number of Infections') | |
plt.title("Covid Infection Rate in various Age group categories") | |
# plt.show() | |
st.pyplot(vv) | |
df.to_csv('data/provisional_data.csv',index=False) | |
provisional_data=pd.read_csv('data/provisional_data.csv',index_col=['Year'],parse_dates=['Year']) | |
provisional_data.rename(columns = {'COVID-19 Deaths':'COVID_Deaths', 'Pneumonia Deaths':'Pneumonia_Deaths','Influenza Deaths':'Influenza_Deaths'}, inplace = True) | |
# Analysis of infection rate per Gender | |
Male_Covid=provisional_data['COVID_Deaths'][provisional_data['Sex']=='Male'].to_list() | |
Female_Covid=provisional_data['COVID_Deaths'][provisional_data['Sex']=='Female'].to_list() | |
Female_Pneumonia=provisional_data['Pneumonia_Deaths'][provisional_data['Sex']=='Female'].to_list() | |
Male_Pneumonia=provisional_data['Pneumonia_Deaths'][provisional_data['Sex']=='Male'].to_list() | |
Female_Influenza=provisional_data['Influenza_Deaths'][provisional_data['Sex']=='Female'].to_list() | |
Male_Influenza=provisional_data['Influenza_Deaths'][provisional_data['Sex']=='Male'].to_list() | |
Gender_Infection_rate={'F_Covid':sum(Female_Covid),'M_Covid':sum(Male_Covid),'F_Pneum..':sum(Female_Pneumonia),'M_Pneum..':sum(Male_Pneumonia),'F_Influenza':sum(Female_Influenza),'M_Influenza':sum(Male_Influenza)} | |
names=list(Gender_Infection_rate.keys()) | |
values=list(Gender_Infection_rate.values()) | |
zz=plt.figure() | |
plt.bar(range(len(Gender_Infection_rate)),values,tick_label=names,color=['black', 'red', 'green', 'blue', 'cyan','pink'],width=0.3) | |
plt.xlabel('Gender') | |
plt.ylabel('Number of Infections') | |
plt.title("Analysis of infection rate per Gender") | |
# plt.show() | |
st.pyplot(zz) | |
# Finding the highest recorded value of detected covid death | |
provisional_data["COVID_Deaths"].max() | |
# Finding the highest recorded value of detected Pneumonia_Deaths | |
provisional_data["Pneumonia_Deaths"].max() | |
# Finding the highest recorded value of detected Influenza_Deaths | |
provisional_data["Influenza_Deaths"].max() | |
st.subheader('Finding Correlation between different diseases') | |
# The correlation between Covid 19 and Pneumonia | |
correlation1=provisional_data['COVID_Deaths']. corr(provisional_data['Pneumonia_Deaths']) | |
st.write('The correlation between Covid 19 and Pneumonia',correlation1) | |
# The correlation between Covid 19 and Influenza | |
correlation2=provisional_data['COVID_Deaths']. corr(provisional_data['Influenza_Deaths']) | |
st.write('The correlation between Covid 19 and Influenza',correlation2) | |
# The correlation between Pneumonia and Influenza Disease | |
correlation3=provisional_data['Pneumonia_Deaths']. corr(provisional_data['Influenza_Deaths']) | |
st.write('The correlation between Pneumonia and Influenza Disease',correlation3) |