Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from llama_index import (
|
| 5 |
+
ServiceContext,
|
| 6 |
+
SimpleDirectoryReader,
|
| 7 |
+
StorageContext,
|
| 8 |
+
VectorStoreIndex,
|
| 9 |
+
set_global_service_context,
|
| 10 |
+
)
|
| 11 |
+
from llama_index.llms import Gemini
|
| 12 |
+
from llama_index.embeddings import GeminiEmbedding
|
| 13 |
+
|
| 14 |
+
model_name = "models/embedding-001"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
llm = Gemini()
|
| 18 |
+
embed_model = GeminiEmbedding(
|
| 19 |
+
model_name=model_name, api_key=GOOGLE_API_KEY, title="this is a document"
|
| 20 |
+
)
|
| 21 |
+
# Reads pdfs at "./" path
|
| 22 |
+
documents = (
|
| 23 |
+
SimpleDirectoryReader(
|
| 24 |
+
input_dir = './',
|
| 25 |
+
required_exts = [".pdf"])
|
| 26 |
+
.load_data()
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# ServiceContext is a bundle of commonly used
|
| 30 |
+
# resources used during the indexing and
|
| 31 |
+
# querying stage
|
| 32 |
+
service_context = (
|
| 33 |
+
ServiceContext
|
| 34 |
+
.from_defaults(
|
| 35 |
+
llm=llm,
|
| 36 |
+
embed_model=embed_model,
|
| 37 |
+
chunk_size=545
|
| 38 |
+
)
|
| 39 |
+
)
|
| 40 |
+
set_global_service_context(service_context)
|
| 41 |
+
print("node passer11")
|
| 42 |
+
# Node represents a “chunk” of a source Document
|
| 43 |
+
nodes = (
|
| 44 |
+
service_context
|
| 45 |
+
.node_parser
|
| 46 |
+
.get_nodes_from_documents(documents)
|
| 47 |
+
)
|
| 48 |
+
print("node passer")
|
| 49 |
+
# offers core abstractions around storage of Nodes,
|
| 50 |
+
# indices, and vectors
|
| 51 |
+
storage_context = StorageContext.from_defaults()
|
| 52 |
+
storage_context.docstore.add_documents(nodes)
|
| 53 |
+
print("node passer")
|
| 54 |
+
# Create the vectorstore index
|
| 55 |
+
index = (
|
| 56 |
+
VectorStoreIndex
|
| 57 |
+
.from_documents(
|
| 58 |
+
documents,
|
| 59 |
+
storage_context=storage_context,
|
| 60 |
+
llm=llm
|
| 61 |
+
)
|
| 62 |
+
)
|
| 63 |
+
print("node passer")
|
| 64 |
+
query_engine = index.as_query_engine()
|
| 65 |
+
|
| 66 |
+
# Query the index
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def greet(name):
|
| 70 |
+
response = query_engine.query(name)
|
| 71 |
+
return response
|
| 72 |
+
|
| 73 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 74 |
+
iface.launch()
|