Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
from llama_index import (
|
5 |
+
ServiceContext,
|
6 |
+
SimpleDirectoryReader,
|
7 |
+
StorageContext,
|
8 |
+
VectorStoreIndex,
|
9 |
+
set_global_service_context,
|
10 |
+
)
|
11 |
+
from llama_index.llms import Gemini
|
12 |
+
from llama_index.embeddings import GeminiEmbedding
|
13 |
+
|
14 |
+
model_name = "models/embedding-001"
|
15 |
+
|
16 |
+
|
17 |
+
llm = Gemini()
|
18 |
+
embed_model = GeminiEmbedding(
|
19 |
+
model_name=model_name, api_key=GOOGLE_API_KEY, title="this is a document"
|
20 |
+
)
|
21 |
+
# Reads pdfs at "./" path
|
22 |
+
documents = (
|
23 |
+
SimpleDirectoryReader(
|
24 |
+
input_dir = './',
|
25 |
+
required_exts = [".pdf"])
|
26 |
+
.load_data()
|
27 |
+
)
|
28 |
+
|
29 |
+
# ServiceContext is a bundle of commonly used
|
30 |
+
# resources used during the indexing and
|
31 |
+
# querying stage
|
32 |
+
service_context = (
|
33 |
+
ServiceContext
|
34 |
+
.from_defaults(
|
35 |
+
llm=llm,
|
36 |
+
embed_model=embed_model,
|
37 |
+
chunk_size=545
|
38 |
+
)
|
39 |
+
)
|
40 |
+
set_global_service_context(service_context)
|
41 |
+
print("node passer11")
|
42 |
+
# Node represents a “chunk” of a source Document
|
43 |
+
nodes = (
|
44 |
+
service_context
|
45 |
+
.node_parser
|
46 |
+
.get_nodes_from_documents(documents)
|
47 |
+
)
|
48 |
+
print("node passer")
|
49 |
+
# offers core abstractions around storage of Nodes,
|
50 |
+
# indices, and vectors
|
51 |
+
storage_context = StorageContext.from_defaults()
|
52 |
+
storage_context.docstore.add_documents(nodes)
|
53 |
+
print("node passer")
|
54 |
+
# Create the vectorstore index
|
55 |
+
index = (
|
56 |
+
VectorStoreIndex
|
57 |
+
.from_documents(
|
58 |
+
documents,
|
59 |
+
storage_context=storage_context,
|
60 |
+
llm=llm
|
61 |
+
)
|
62 |
+
)
|
63 |
+
print("node passer")
|
64 |
+
query_engine = index.as_query_engine()
|
65 |
+
|
66 |
+
# Query the index
|
67 |
+
|
68 |
+
|
69 |
+
def greet(name):
|
70 |
+
response = query_engine.query(name)
|
71 |
+
return response
|
72 |
+
|
73 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
74 |
+
iface.launch()
|