File size: 1,388 Bytes
0a07732
 
 
c4b57ef
 
bd62f39
c4b57ef
5be60ea
 
ea2be3b
0b97ff9
c4b57ef
 
0a07732
0b97ff9
0a07732
 
 
0b97ff9
0a07732
0b97ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import requests

from g4f import Provider, models
from langchain.llms.base import LLM
import g4f
from langchain_g4f import G4FLLM
g4f.debug.logging = True  # Enable logging
g4f.check_version = False  # Disable automatic version checking
#print(g4f.version)  # Check version
#print(g4f.Provider.Ails.params)  # Supported args



url = "https://app.embedchain.ai/api/v1/pipelines/024a60fa-cfc3-41a2-a27b-2f6a04c1a6fe/context/"


def greet(name):
  payload = {
  "query": f"{name}",
  "count": 25 }
  headers = {
  'Authorization': 'Token ec-fBwP02l3yodIa40BHkSEdhqVQmelK8pNsbrUew2J',}
  response = requests.request("POST", url, headers=headers, json=payload)
  
  print(response.text)
  print(name)
  c = response.text
  llm = LLM = G4FLLM(model=models.gpt_35_turbo_16k    )
  res = llm(f"""
      Use the following pieces of context to answer the query at the end.
      If you don't know the answer, just say that you don't know, don't try to make up an answer.

      ${c}

      Query: ${name}

      Helpful Answer:
    system_prompt: |
     Agis en tant qu'assistant juridique gabonais  Répons au question en français et en citant les articles .

    """)
  print(res) 
  return res



iface = gr.Interface(
    fn=greet,
    inputs="text",
    outputs=gr.Textbox(label="Réponse"),
    title="bot",
    description=" Chatbot-law-code-pénal ")

iface.launch()