File size: 1,287 Bytes
0a07732
 
 
c4b57ef
 
 
 
50adde5
 
 
 
c4b57ef
 
0a07732
 
 
 
 
 
 
7925389
0a07732
d03ad5d
 
 
 
0a07732
 
 
 
c4b57ef
 
50adde5
c4b57ef
 
d3bf19f
cd66d08
 
 
 
 
 
 
 
 
60466ba
cd66d08
 
c4b57ef
 
0a07732
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import requests

from g4f import Provider, models
from langchain.llms.base import LLM

from langchain_g4f import G4FLLM
g4f.debug.logging = True  # Enable logging
g4f.check_version = False  # Disable automatic version checking
print(g4f.version)  # Check version
print(g4f.Provider.Ails.params)  # Supported args


url = "https://app.embedchain.ai/api/v1/pipelines/f14b3df8-db63-456c-8a7f-4323b4467271/context/"



def greet(name):
    payload = {
  "query": f"{name}",
  "count": 15
    }
    headers = {
  'Authorization': 'Token ec-pbVFWamfNAciPwb18ZwaQkKKUCCBnafko9ydl3Y5',
}

    
    response = requests.request("POST", url, headers=headers, json=payload)

    print(name)
    c = response.text
    llm = LLM = G4FLLM(
        model=models.gpt_35_turbo
    )

    res = llm(f"""
      Use the following pieces of context to answer the query at the end.
      If you don't know the answer, just say that you don't know, don't try to make up an answer.

      ${c}

      Query: ${name}

      Helpful Answer:
    system_prompt: |
     Agis en tant qu'assistant juridique gabonais  Répons au question en français et en citant les articles .

    """)
    print(res) 
    return res



iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()