|
import gradio as gr |
|
import requests |
|
|
|
from g4f import Provider, models |
|
from langchain.llms.base import LLM |
|
import g4f |
|
from langchain_g4f import G4FLLM |
|
g4f.debug.logging = True |
|
g4f.check_version = False |
|
|
|
|
|
|
|
|
|
|
|
url = "https://app.embedchain.ai/api/v1/pipelines/024a60fa-cfc3-41a2-a27b-2f6a04c1a6fe/context/" |
|
|
|
|
|
def greet(name): |
|
payload = { |
|
"query": f"{name}", |
|
"count": 25 } |
|
headers = { |
|
'Authorization': 'Token ec-fBwP02l3yodIa40BHkSEdhqVQmelK8pNsbrUew2J',} |
|
response = requests.request("POST", url, headers=headers, json=payload) |
|
|
|
print(response.text) |
|
print(name) |
|
c = response.text |
|
llm = LLM = G4FLLM(model=models.gpt_35_turbo_16k ) |
|
res = llm(f""" |
|
Use the following pieces of context to answer the query at the end. |
|
If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|
|
|
${c} |
|
|
|
Query: ${name} |
|
|
|
Helpful Answer: |
|
|
|
""") |
|
print(res) |
|
return res |
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=greet, |
|
inputs="text", |
|
outputs=gr.Textbox(label="Réponse"), |
|
title="bot", |
|
description=" Chatbot-law-code-pénal ") |
|
|
|
iface.launch() |
|
|