File size: 6,816 Bytes
dd6e891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import streamlit as st
import mediapipe as mp
import numpy as np
import base64
import io
import PIL.Image
import asyncio
import os
from google import genai
from streamlit_webrtc import webrtc_streamer
import av
import pyaudio
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
# Configuration
FORMAT = pyaudio.paInt16
CHANNELS = 1
SEND_SAMPLE_RATE = 16000
RECEIVE_SAMPLE_RATE = 24000
CHUNK_SIZE = 1024
# Initialize Genai client
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
client = genai.Client(http_options={"api_version": "v1alpha"})
MODEL = "models/gemini-2.0-flash-exp"
CONFIG = {"generation_config": {"response_modalities": ["AUDIO"]}}
class AudioProcessor:
def __init__(self):
self.audio = pyaudio.PyAudio()
self.stream = None
self.audio_queue = asyncio.Queue()
def start_stream(self):
mic_info = self.audio.get_default_input_device_info()
self.stream = self.audio.open(
format=FORMAT,
channels=CHANNELS,
rate=SEND_SAMPLE_RATE,
input=True,
input_device_index=mic_info["index"],
frames_per_buffer=CHUNK_SIZE,
)
def stop_stream(self):
if self.stream:
self.stream.stop_stream()
self.stream.close()
self.stream = None
class VideoProcessor:
def __init__(self):
self.frame_queue = asyncio.Queue(maxsize=5)
self.mp_draw = mp.solutions.drawing_utils
self.mp_face_detection = mp.solutions.face_detection
self.face_detection = self.mp_face_detection.FaceDetection(
min_detection_confidence=0.5)
def video_frame_callback(self, frame):
# Convert the frame to RGB
img = frame.to_ndarray(format="rgb24")
# Process the frame with MediaPipe
results = self.face_detection.process(img)
# Draw face detection annotations if faces are detected
if results.detections:
for detection in results.detections:
self.mp_draw.draw_detection(img, detection)
# Convert to PIL Image
pil_img = PIL.Image.fromarray(img)
pil_img.thumbnail([1024, 1024])
# Prepare frame data for Gemini
image_io = io.BytesIO()
pil_img.save(image_io, format="jpeg")
image_io.seek(0)
frame_data = {
"mime_type": "image/jpeg",
"data": base64.b64encode(image_io.read()).decode()
}
try:
self.frame_queue.put_nowait(frame_data)
except asyncio.QueueFull:
pass
return av.VideoFrame.from_ndarray(img, format="rgb24")
def __del__(self):
# Cleanup MediaPipe resources
if hasattr(self, 'face_detection'):
self.face_detection.close()
def initialize_session_state():
if 'audio_processor' not in st.session_state:
st.session_state.audio_processor = AudioProcessor()
if 'video_processor' not in st.session_state:
st.session_state.video_processor = VideoProcessor()
if 'session' not in st.session_state:
st.session_state.session = None
if 'messages' not in st.session_state:
st.session_state.messages = []
def display_chat_messages():
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def main():
st.title("Gemini Interactive Assistant")
# Initialize session state
initialize_session_state()
# Sidebar configuration
st.sidebar.title("Settings")
input_mode = st.sidebar.radio(
"Input Mode",
["Text Only", "Audio + Video", "Audio Only"]
)
# Enable face detection option
enable_face_detection = st.sidebar.checkbox("Enable Face Detection", value=True)
if enable_face_detection:
detection_confidence = st.sidebar.slider(
"Face Detection Confidence",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.1
)
st.session_state.video_processor.face_detection = (
st.session_state.video_processor.mp_face_detection.FaceDetection(
min_detection_confidence=detection_confidence
)
)
# Display chat history
display_chat_messages()
# Main interaction area
if input_mode == "Text Only":
user_input = st.chat_input("Your message")
if user_input:
# Add user message to chat
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
async def send_message():
async with client.aio.live.connect(model=MODEL, config=CONFIG) as session:
await session.send(user_input, end_of_turn=True)
turn = session.receive()
async for response in turn:
if text := response.text:
# Add assistant response to chat
st.session_state.messages.append(
{"role": "assistant", "content": text}
)
with st.chat_message("assistant"):
st.markdown(text)
asyncio.run(send_message())
else:
# Video stream setup
if input_mode == "Audio + Video":
ctx = webrtc_streamer(
key="gemini-stream",
video_frame_callback=st.session_state.video_processor.video_frame_callback,
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
media_stream_constraints={"video": True, "audio": True},
)
# Audio controls
col1, col2 = st.columns(2)
with col1:
if st.button("Start Recording", type="primary"):
st.session_state.audio_processor.start_stream()
st.session_state['recording'] = True
with col2:
if st.button("Stop Recording", type="secondary"):
st.session_state.audio_processor.stop_stream()
st.session_state['recording'] = False
async def process_audio_stream():
while st.session_state.get('recording', False):
if st.session_state.audio_processor.stream:
data = st.session_state.audio_processor.stream.read(CHUNK_SIZE)
await st.session_state.audio_processor.audio_queue.put({
"data": data,
"mime_type": "audio/pcm"
})
await asyncio.sleep(0.1)
if __name__ == "__main__":
main() |