Spaces:
Runtime error
Runtime error
File size: 5,850 Bytes
e5cfbd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from PIL import Image
import gradio as gr
import cv2
from ultralytics import ASSETS, YOLO
import tempfile
import numpy as np
import time
def load_model(model_name):
"""Loads the specified YOLO model for either segmentation or detection."""
if model_name == "yolov9c-seg":
model_path = "yolov9c-seg.pt"
elif model_name == "yolov9e-seg":
model_path = "yolov9e-seg.pt"
elif model_name == "yolov9c":
model_path = "yolov9c.pt"
elif model_name == "yolov9e":
model_path = "yolov9e.pt"
else:
raise ValueError(f"Invalid model name: {model_name}")
return YOLO(model_path)
def predict_image(img, conf_threshold, iou_threshold, task="detection", model_name=None):
"""Predicts and plots results in an image using YOLO model with adjustable confidence and IOU thresholds."""
if task == "segmentation":
if not model_name:
model_name = "yolov9c-seg"
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
raise ValueError(f"Invalid model name for segmentation: {model_name}")
elif task == "detection":
if not model_name:
model_name = "yolov9c"
elif model_name not in ["yolov9c", "yolov9e"]:
raise ValueError(f"Invalid model name for detection: {model_name}")
else:
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
model = load_model(model_name)
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
def predict_image_with_task(img, conf_threshold, iou_threshold, task, model_name):
return predict_image(img, conf_threshold, iou_threshold, task, model_name)
image_iface = gr.Interface(
fn=predict_image_with_task,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
],
outputs=gr.Image(type="pil", label="Result"),
title="X509",
description="Upload images for inference. Choose task and corresponding model.",
examples=[
["cars.jpg", 0.25, 0.45, "detection", "yolov9c"],
],
)
def predict_video(video_path, conf_threshold, iou_threshold, task="detection", model_name=None):
"""Predicts and processes video frames using YOLO model with adjustable confidence and IOU thresholds."""
if task == "segmentation":
if not model_name:
model_name = "yolov9c-seg"
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
raise ValueError(f"Invalid model name for segmentation: {model_name}")
elif task == "detection":
if not model_name:
model_name = "yolov9c"
elif model_name not in ["yolov9c", "yolov9e"]:
raise ValueError(f"Invalid model name for detection: {model_name}")
else:
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
model = load_model(model_name)
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
temp_video_path = tempfile.mktemp(suffix=".mp4")
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
frame_count = 0
start_time = time.time()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
elapsed_time = time.time() - start_time
current_fps = frame_count / elapsed_time
pil_img = Image.fromarray(frame[..., ::-1])
results = model.predict(
source=pil_img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1])
frame = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
cv2.putText(frame, f"FPS: {current_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
out.write(frame)
cap.release()
out.release()
return temp_video_path
def predict_video_with_task(video_path, conf_threshold, iou_threshold, task, model_name):
return predict_video(video_path, conf_threshold, iou_threshold, task, model_name)
video_iface = gr.Interface(
fn=predict_video_with_task,
inputs=[
gr.Video(label="Upload Video", interactive=True),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
],
outputs=gr.File(label="Result"),
title="X509",
description="Upload video for inference. Choose task and corresponding model.",
examples=[
["VID_20240517112011.mp4", 0.25, 0.45, "detection", "yolov9c"],
]
)
production = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
production.launch() |