Spaces:
Runtime error
Runtime error
from PIL import Image | |
import gradio as gr | |
import cv2 | |
from ultralytics import ASSETS, YOLO | |
import tempfile | |
import numpy as np | |
import time | |
def load_model(model_name): | |
"""Loads the specified YOLO model for either segmentation or detection.""" | |
if model_name == "yolov9c-seg": | |
model_path = "yolov9c-seg.pt" | |
elif model_name == "yolov9e-seg": | |
model_path = "yolov9e-seg.pt" | |
elif model_name == "yolov9c": | |
model_path = "yolov9c.pt" | |
elif model_name == "yolov9e": | |
model_path = "yolov9e.pt" | |
elif model_name == "yolov8n": | |
model_path = "yolov8n.pt" | |
elif model_name == "yolov8n-seg": | |
model_path = "yolov8n-seg.pt" | |
else: | |
raise ValueError(f"Invalid model name: {model_name}") | |
return YOLO(model_path) | |
def predict_image(img, conf_threshold, iou_threshold, task="detection", model_name=None): | |
"""Predicts and plots results in an image using YOLO model with adjustable confidence and IOU thresholds.""" | |
if task == "segmentation": | |
if not model_name: | |
model_name = "yolov9c-seg" | |
elif model_name not in ["yolov9c-seg", "yolov9e-seg", "yolov8n-seg"]: | |
raise ValueError(f"Invalid model name for segmentation: {model_name}") | |
elif task == "detection": | |
if not model_name: | |
model_name = "yolov9c" | |
elif model_name not in ["yolov9c", "yolov9e", "yolov8n"]: | |
raise ValueError(f"Invalid model name for detection: {model_name}") | |
else: | |
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.") | |
model = load_model(model_name) | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
return im | |
def predict_image_with_task(img, conf_threshold, iou_threshold, task, model_name): | |
return predict_image(img, conf_threshold, iou_threshold, task, model_name) | |
image_iface = gr.Interface( | |
fn=predict_image_with_task, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"), | |
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov8n", "yolov9c-seg", "yolov9e-seg", "yolov8n-seg"], value="yolov9c", label="Model"), | |
], | |
outputs=gr.Image(type="pil", label="Result"), | |
title="X509", | |
description="Upload images for inference. Choose task and corresponding model.", | |
examples=[ | |
["cars.jpg", 0.25, 0.45, "detection", "yolov9c"], | |
["cars.jpg", 0.25, 0.45, "segmentation", "yolov9c-seg"], | |
], | |
) | |
def predict_video(video_path, conf_threshold, iou_threshold, task="detection", model_name=None): | |
"""Predicts and processes video frames using YOLO model with adjustable confidence and IOU thresholds.""" | |
if task == "segmentation": | |
if not model_name: | |
model_name = "yolov9c-seg" | |
elif model_name not in ["yolov9c-seg", "yolov9e-seg", "yolov8n-seg"]: | |
raise ValueError(f"Invalid model name for segmentation: {model_name}") | |
elif task == "detection": | |
if not model_name: | |
model_name = "yolov9c" | |
elif model_name not in ["yolov9c", "yolov9e", "yolov8n"]: | |
raise ValueError(f"Invalid model name for detection: {model_name}") | |
else: | |
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.") | |
model = load_model(model_name) | |
cap = cv2.VideoCapture(video_path) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
temp_video_path = tempfile.mktemp(suffix=".mp4") | |
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height)) | |
frame_count = 0 | |
start_time = time.time() | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
elapsed_time = time.time() - start_time | |
current_fps = frame_count / elapsed_time | |
pil_img = Image.fromarray(frame[..., ::-1]) | |
results = model.predict( | |
source=pil_img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
processed_frame = Image.fromarray(im_array[..., ::-1]) | |
frame = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR) | |
cv2.putText(frame, f"FPS: {current_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
out.write(frame) | |
cap.release() | |
out.release() | |
return temp_video_path | |
def predict_video_with_task(video_path, conf_threshold, iou_threshold, task, model_name): | |
return predict_video(video_path, conf_threshold, iou_threshold, task, model_name) | |
video_iface = gr.Interface( | |
fn=predict_video_with_task, | |
inputs=[ | |
gr.Video(label="Upload Video", interactive=True), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"), | |
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov8n", "yolov9c-seg", "yolov9e-seg", "yolov8n-seg"], value="yolov9c", label="Model"), | |
], | |
outputs=gr.File(label="Result"), | |
title="X509", | |
description="Upload video for inference. Choose task and corresponding model.", | |
examples=[ | |
["VID_20240517112011.mp4", 0.25, 0.45, "detection", "yolov8n"], | |
["VID_20240517112011.mp4", 0.25, 0.45, "segmentation", "yolov8n-seg"], | |
] | |
) | |
production = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"]) | |
if __name__ == '__main__': | |
production.launch() |