from PIL import Image import gradio as gr import cv2 from ultralytics import ASSETS, YOLO import tempfile import numpy as np import time def load_model(model_name): """Loads the specified YOLO model for either segmentation or detection.""" if model_name == "yolov9c-seg": model_path = "yolov9c-seg.pt" elif model_name == "yolov9e-seg": model_path = "yolov9e-seg.pt" elif model_name == "yolov9c": model_path = "yolov9c.pt" elif model_name == "yolov9e": model_path = "yolov9e.pt" else: raise ValueError(f"Invalid model name: {model_name}") return YOLO(model_path) def predict_image(img, conf_threshold, iou_threshold, task="detection", model_name=None): """Predicts and plots results in an image using YOLO model with adjustable confidence and IOU thresholds.""" if task == "segmentation": if not model_name: model_name = "yolov9c-seg" elif model_name not in ["yolov9c-seg", "yolov9e-seg"]: raise ValueError(f"Invalid model name for segmentation: {model_name}") elif task == "detection": if not model_name: model_name = "yolov9c" elif model_name not in ["yolov9c", "yolov9e"]: raise ValueError(f"Invalid model name for detection: {model_name}") else: raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.") model = load_model(model_name) results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im def predict_image_with_task(img, conf_threshold, iou_threshold, task, model_name): return predict_image(img, conf_threshold, iou_threshold, task, model_name) image_iface = gr.Interface( fn=predict_image_with_task, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"), gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"), ], outputs=gr.Image(type="pil", label="Result"), title="X509", description="Upload images for inference. Choose task and corresponding model.", examples=[ ["cars.jpg", 0.25, 0.45, "detection", "yolov9c"], ], ) def predict_video(video_path, conf_threshold, iou_threshold, task="detection", model_name=None): """Predicts and processes video frames using YOLO model with adjustable confidence and IOU thresholds.""" if task == "segmentation": if not model_name: model_name = "yolov9c-seg" elif model_name not in ["yolov9c-seg", "yolov9e-seg"]: raise ValueError(f"Invalid model name for segmentation: {model_name}") elif task == "detection": if not model_name: model_name = "yolov9c" elif model_name not in ["yolov9c", "yolov9e"]: raise ValueError(f"Invalid model name for detection: {model_name}") else: raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.") model = load_model(model_name) cap = cv2.VideoCapture(video_path) fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) temp_video_path = tempfile.mktemp(suffix=".mp4") out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height)) frame_count = 0 start_time = time.time() while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_count += 1 elapsed_time = time.time() - start_time current_fps = frame_count / elapsed_time pil_img = Image.fromarray(frame[..., ::-1]) results = model.predict( source=pil_img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() processed_frame = Image.fromarray(im_array[..., ::-1]) frame = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR) cv2.putText(frame, f"FPS: {current_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) out.write(frame) cap.release() out.release() return temp_video_path def predict_video_with_task(video_path, conf_threshold, iou_threshold, task, model_name): return predict_video(video_path, conf_threshold, iou_threshold, task, model_name) video_iface = gr.Interface( fn=predict_video_with_task, inputs=[ gr.Video(label="Upload Video", interactive=True), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"), gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"), ], outputs=gr.File(label="Result"), title="X509", description="Upload video for inference. Choose task and corresponding model.", examples=[ ["VID_20240517112011.mp4", 0.25, 0.45, "detection", "yolov9c"], ] ) production = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"]) if __name__ == '__main__': production.launch()