from huggingface_hub import hf_hub_download n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool. n_batch = 256 import paperscraper from paperqa import Docs from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain from langchain.callbacks.manager import CallbackManager from langchain.embeddings import LlamaCppEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from g4f import Provider, models from langchain.llms.base import LLM from langchain_g4f import G4FLLM # Make sure the model path is correct for your system! llm = LLM = G4FLLM( model=models.gpt_35_turbo, provider=Provider.Aichat, ) from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} embeddings = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) docs = Docs(llm=llm, embeddings=embeddings) keyword_search = 'bispecific antibody manufacture' papers = paperscraper.search_papers(keyword_search, limit=2) for path,data in papers.items(): try: docs.add(path,chunk_chars=500) except ValueError as e: print('Could not read', path, e) answer = docs.query("What manufacturing challenges are unique to bispecific antibodies?") print(answer) def re(r): print(answer) return r gr.Interface(fn=re,inputs=gr.Textbox(),outputs=gr.Textbox).launch()