File size: 2,704 Bytes
e961a39
 
 
 
 
b5baa16
e961a39
 
 
b8c00d0
43b3d54
 
0706992
4c5783c
 
e961a39
b550edf
e961a39
 
 
e3cca40
 
e961a39
7009b46
1982296
11f5b31
 
7009b46
0706992
0bf30f8
e961a39
 
 
c3c4b99
e961a39
 
0706992
43b3d54
0706992
 
 
 
e3cca40
0706992
 
 
 
3d4c41f
e961a39
7009b46
e961a39
 
 
 
 
614124f
e961a39
 
 
 
 
 
 
 
70315c9
f7a4fca
b8c00d0
 
 
 
 
 
 
e59d3ab
70315c9
b8c00d0
 
70315c9
1f22aa0
e961a39
 
 
f1bb85a
e961a39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import logging
import sys
import gradio as gr
import asyncio
import nest_asyncio
import g4f 
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))


from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext

#from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings 
from langchain_community.embeddings import HuggingFaceInstructEmbeddings 
#from llama_index.embeddings.huggingface import  HuggingFaceInstructEmbeddings
from g4f import Provider, models

from langchain.llms.base import LLM
from llama_index.llms import LangChainLLM
from langchain_g4f import G4FLLM
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
nest_asyncio.apply()
g4f.debug.logging = True  # Enable logging
#g4f.check_version = False  # Disable automatic version checking
#print(g4f.version)  # Check version
#print(g4f.Provider.Ails.params)  

"""
#documents = SimpleDirectoryReader('data').load_data()
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embed_model = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs 
) 
"""
#from langchain_community.embeddings import HuggingFaceInstructEmbeddings

model_name = "hkunlp/instructor-xl"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
Settings.embed_model = HuggingFaceInstructEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

llm= LLM = G4FLLM(
        model=models.gpt_35_turbo_16k,
    )

llm = LangChainLLM(llm=llm)
#embed_model=embed_model)

service_context = ServiceContext.from_defaults(chunk_size=5512, llm=llm, embed_model=embed_model )

from llama_index import StorageContext, load_index_from_storage

# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="./storage")
# load index
index = load_index_from_storage(storage_context, service_context =service_context) 

"""
query_engine = index.as_query_engine() 
query_engine_tools = [
    QueryEngineTool(
        query_engine=query_engine, 
        metadata=ToolMetadata(name='legal_code_gabon', description='Data on the legal codes of Gabon')
    )
]

query_engine = SubQuestionQueryEngine.from_defaults(query_engine_tools=query_engine_tools) 
"""
async def main(query):
    
    query_engine = index.as_query_engine()
    response = query_engine.query(query)
    print(response)
    return response

iface = gr.Interface(fn=main, inputs=gr.Textbox(label="Question:", lines=4), outputs="text")
iface.launch()