Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ load_index_from_storage,
|
|
17 |
set_global_service_context,
|
18 |
)
|
19 |
#from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
|
20 |
-
|
21 |
#from llama_index.embeddings.huggingface import HuggingFaceInstructEmbeddings
|
22 |
from g4f import Provider, models
|
23 |
|
@@ -35,7 +35,7 @@ g4f.debug.logging = True # Enable logging
|
|
35 |
#print(g4f.version) # Check version
|
36 |
#print(g4f.Provider.Ails.params)
|
37 |
|
38 |
-
|
39 |
#documents = SimpleDirectoryReader('data').load_data()
|
40 |
model_kwargs = {'device': 'cpu'}
|
41 |
encode_kwargs = {'normalize_embeddings': True}
|
@@ -43,7 +43,7 @@ embed_model = HuggingFaceInstructEmbeddings(
|
|
43 |
model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs,
|
44 |
encode_kwargs=encode_kwargs
|
45 |
)
|
46 |
-
|
47 |
#from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
48 |
|
49 |
model_name = "hkunlp/instructor-xl"
|
@@ -52,10 +52,10 @@ encode_kwargs = {'normalize_embeddings': True}
|
|
52 |
|
53 |
from llama_index.core import Settings
|
54 |
|
55 |
-
embed_model = InstructorEmbedding()
|
56 |
|
57 |
Settings.embed_model = embed_model
|
58 |
-
Settings.chunk_size = 512
|
59 |
llm= LLM = G4FLLM(
|
60 |
model=models.gpt_35_turbo_16k,
|
61 |
)
|
@@ -63,7 +63,7 @@ llm= LLM = G4FLLM(
|
|
63 |
Settings.llm = LangChainLLM(llm=llm)
|
64 |
#embed_model=embed_model)
|
65 |
|
66 |
-
|
67 |
|
68 |
|
69 |
# rebuild storage context
|
|
|
17 |
set_global_service_context,
|
18 |
)
|
19 |
#from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
|
20 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
21 |
#from llama_index.embeddings.huggingface import HuggingFaceInstructEmbeddings
|
22 |
from g4f import Provider, models
|
23 |
|
|
|
35 |
#print(g4f.version) # Check version
|
36 |
#print(g4f.Provider.Ails.params)
|
37 |
|
38 |
+
|
39 |
#documents = SimpleDirectoryReader('data').load_data()
|
40 |
model_kwargs = {'device': 'cpu'}
|
41 |
encode_kwargs = {'normalize_embeddings': True}
|
|
|
43 |
model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs,
|
44 |
encode_kwargs=encode_kwargs
|
45 |
)
|
46 |
+
|
47 |
#from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
48 |
|
49 |
model_name = "hkunlp/instructor-xl"
|
|
|
52 |
|
53 |
from llama_index.core import Settings
|
54 |
|
55 |
+
#embed_model = InstructorEmbedding(model_name)
|
56 |
|
57 |
Settings.embed_model = embed_model
|
58 |
+
#Settings.chunk_size = 512
|
59 |
llm= LLM = G4FLLM(
|
60 |
model=models.gpt_35_turbo_16k,
|
61 |
)
|
|
|
63 |
Settings.llm = LangChainLLM(llm=llm)
|
64 |
#embed_model=embed_model)
|
65 |
|
66 |
+
Settings.service_context = ServiceContext.from_defaults(chunk_size=5512, llm=llm, embed_model=embed_model )
|
67 |
|
68 |
|
69 |
# rebuild storage context
|