import logging import sys import gradio as gr import asyncio import nest_asyncio logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext from llama_index.llms import HuggingFaceLLM from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings from g4f import Provider, models from langchain.llms.base import LLM from llama_index.llms import LangChainLLM from langchain_g4f import G4FLLM nest_asyncio.apply() #documents = SimpleDirectoryReader('data').load_data() model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} embed_model = HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) llm= LLM = G4FLLM( model=models.gpt_35_turbo, provider=Provider.FreeGpt, ) llm = LangChainLLM(llm=llm) #embed_model=embed_model) service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model ) from llama_index import StorageContext, load_index_from_storage # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="./storage") # load index index = load_index_from_storage(storage_context, service_context =service_context) async def main(query): query_engine = index.as_query_engine() response = query_engine.query(query) print(response) return response iface = gr.Interface(fn=main, inputs="text", outputs="text") iface.launch()