Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
class yolox():
|
5 |
+
def __init__(self, model, p6=False, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5):
|
6 |
+
with open('coco.names', 'rt') as f:
|
7 |
+
self.class_names = f.read().rstrip('\n').split('\n')
|
8 |
+
self.net = cv2.dnn.readNet(model)
|
9 |
+
self.input_size = (640, 640)
|
10 |
+
self.mean = (0.485, 0.456, 0.406)
|
11 |
+
self.std = (0.229, 0.224, 0.225)
|
12 |
+
if not p6:
|
13 |
+
self.strides = [8, 16, 32]
|
14 |
+
else:
|
15 |
+
self.strides = [8, 16, 32, 64]
|
16 |
+
self.confThreshold = confThreshold
|
17 |
+
self.nmsThreshold = nmsThreshold
|
18 |
+
self.objThreshold = objThreshold
|
19 |
+
def preprocess(self, image):
|
20 |
+
if len(image.shape) == 3:
|
21 |
+
padded_img = np.ones((self.input_size[0], self.input_size[1], 3)) * 114.0
|
22 |
+
else:
|
23 |
+
padded_img = np.ones(self.input_size) * 114.0
|
24 |
+
img = np.array(image)
|
25 |
+
r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1])
|
26 |
+
resized_img = cv2.resize(
|
27 |
+
img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR
|
28 |
+
).astype(np.float32)
|
29 |
+
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
30 |
+
image = padded_img
|
31 |
+
|
32 |
+
image = image.astype(np.float32)
|
33 |
+
image = image[:, :, ::-1]
|
34 |
+
image /= 255.0
|
35 |
+
image -= self.mean
|
36 |
+
image /= self.std
|
37 |
+
return image, r
|
38 |
+
|
39 |
+
def demo_postprocess(self, outputs):
|
40 |
+
grids = []
|
41 |
+
expanded_strides = []
|
42 |
+
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
43 |
+
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
44 |
+
|
45 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
|
46 |
+
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
|
47 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
48 |
+
grids.append(grid)
|
49 |
+
shape = grid.shape[:2]
|
50 |
+
expanded_strides.append(np.full((*shape, 1), stride))
|
51 |
+
|
52 |
+
grids = np.concatenate(grids, 1)
|
53 |
+
expanded_strides = np.concatenate(expanded_strides, 1)
|
54 |
+
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
55 |
+
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
56 |
+
return outputs
|
57 |
+
|
58 |
+
def nms(self, boxes, scores):
|
59 |
+
"""Single class NMS implemented in Numpy."""
|
60 |
+
x1 = boxes[:, 0]
|
61 |
+
y1 = boxes[:, 1]
|
62 |
+
x2 = boxes[:, 2]
|
63 |
+
y2 = boxes[:, 3]
|
64 |
+
|
65 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
66 |
+
order = scores.argsort()[::-1]
|
67 |
+
|
68 |
+
keep = []
|
69 |
+
while order.size > 0:
|
70 |
+
i = order[0]
|
71 |
+
keep.append(i)
|
72 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
73 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
74 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
75 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
76 |
+
|
77 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
78 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
79 |
+
inter = w * h
|
80 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
81 |
+
|
82 |
+
inds = np.where(ovr <= self.nmsThreshold)[0]
|
83 |
+
order = order[inds + 1]
|
84 |
+
|
85 |
+
return keep
|
86 |
+
|
87 |
+
def multiclass_nms(self, boxes, scores):
|
88 |
+
"""Multiclass NMS implemented in Numpy"""
|
89 |
+
final_dets = []
|
90 |
+
num_classes = scores.shape[1]
|
91 |
+
for cls_ind in range(num_classes):
|
92 |
+
cls_scores = scores[:, cls_ind]
|
93 |
+
valid_score_mask = cls_scores > self.confThreshold
|
94 |
+
if valid_score_mask.sum() == 0:
|
95 |
+
continue
|
96 |
+
else:
|
97 |
+
valid_scores = cls_scores[valid_score_mask]
|
98 |
+
valid_boxes = boxes[valid_score_mask]
|
99 |
+
keep = self.nms(valid_boxes, valid_scores)
|
100 |
+
if len(keep) > 0:
|
101 |
+
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
102 |
+
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
|
103 |
+
final_dets.append(dets)
|
104 |
+
if len(final_dets) == 0:
|
105 |
+
return None
|
106 |
+
return np.concatenate(final_dets, 0)
|
107 |
+
|
108 |
+
def vis(self, img, boxes, scores, cls_ids):
|
109 |
+
detected_classes = []
|
110 |
+
for i in range(len(boxes)):
|
111 |
+
box = boxes[i]
|
112 |
+
cls_id = int(cls_ids[i])
|
113 |
+
score = scores[i]
|
114 |
+
if score < self.confThreshold:
|
115 |
+
continue
|
116 |
+
x0 = int(box[0])
|
117 |
+
y0 = int(box[1])
|
118 |
+
x1 = int(box[2])
|
119 |
+
y1 = int(box[3])
|
120 |
+
|
121 |
+
class_name = self.class_names[cls_id]
|
122 |
+
detected_classes.append(class_name)
|
123 |
+
text = '{}:{:.1f}%'.format(class_name, score * 100)
|
124 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
125 |
+
txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
|
126 |
+
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 0, 255), 2)
|
127 |
+
cv2.rectangle(img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1)
|
128 |
+
cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1)
|
129 |
+
return img, detected_classes
|
130 |
+
|
131 |
+
def detect(self, srcimg):
|
132 |
+
detected_classes = []
|
133 |
+
img, ratio = self.preprocess(srcimg)
|
134 |
+
blob = cv2.dnn.blobFromImage(img)
|
135 |
+
self.net.setInput(blob)
|
136 |
+
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
137 |
+
predictions = self.demo_postprocess(outs[0])[0]
|
138 |
+
|
139 |
+
boxes = predictions[:, :4]
|
140 |
+
scores = predictions[:, 4:5] * predictions[:, 5:]
|
141 |
+
|
142 |
+
boxes_xyxy = np.ones_like(boxes)
|
143 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
144 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
145 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
146 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
147 |
+
boxes_xyxy /= ratio
|
148 |
+
dets = self.multiclass_nms(boxes_xyxy, scores)
|
149 |
+
if dets is not None:
|
150 |
+
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
151 |
+
srcimg, detected_classes = self.vis(srcimg, final_boxes, final_scores, final_cls_inds)
|
152 |
+
return srcimg, ", ".join(detected_classes) if len(detected_classes) > 0 else ""
|
153 |
+
|