import numpy as np import cv2 class yolox(): def __init__(self, model, p6=False, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5): with open('coco.names', 'rt') as f: self.class_names = f.read().rstrip('\n').split('\n') self.net = cv2.dnn.readNet(model) self.input_size = (640, 640) self.mean = (0.485, 0.456, 0.406) self.std = (0.229, 0.224, 0.225) if not p6: self.strides = [8, 16, 32] else: self.strides = [8, 16, 32, 64] self.confThreshold = confThreshold self.nmsThreshold = nmsThreshold self.objThreshold = objThreshold def preprocess(self, image): if len(image.shape) == 3: padded_img = np.ones((self.input_size[0], self.input_size[1], 3)) * 114.0 else: padded_img = np.ones(self.input_size) * 114.0 img = np.array(image) r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR ).astype(np.float32) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img image = padded_img image = image.astype(np.float32) image = image[:, :, ::-1] image /= 255.0 image -= self.mean image /= self.std return image, r def demo_postprocess(self, outputs): grids = [] expanded_strides = [] hsizes = [self.input_size[0] // stride for stride in self.strides] wsizes = [self.input_size[1] // stride for stride in self.strides] for hsize, wsize, stride in zip(hsizes, wsizes, self.strides): xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] expanded_strides.append(np.full((*shape, 1), stride)) grids = np.concatenate(grids, 1) expanded_strides = np.concatenate(expanded_strides, 1) outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides return outputs def nms(self, boxes, scores): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= self.nmsThreshold)[0] order = order[inds + 1] return keep def multiclass_nms(self, boxes, scores): """Multiclass NMS implemented in Numpy""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > self.confThreshold if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = self.nms(valid_boxes, valid_scores) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0) def vis(self, img, boxes, scores, cls_ids): detected_classes = [] for i in range(len(boxes)): box = boxes[i] cls_id = int(cls_ids[i]) score = scores[i] if score < self.confThreshold: continue x0 = int(box[0]) y0 = int(box[1]) x1 = int(box[2]) y1 = int(box[3]) class_name = self.class_names[cls_id] detected_classes.append(class_name) text = '{}:{:.1f}%'.format(class_name, score * 100) font = cv2.FONT_HERSHEY_SIMPLEX txt_size = cv2.getTextSize(text, font, 0.4, 1)[0] cv2.rectangle(img, (x0, y0), (x1, y1), (0, 0, 255), 2) cv2.rectangle(img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1) cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1) return img, detected_classes def detect(self, srcimg): detected_classes = [] img, ratio = self.preprocess(srcimg) blob = cv2.dnn.blobFromImage(img) self.net.setInput(blob) outs = self.net.forward(self.net.getUnconnectedOutLayersNames()) predictions = self.demo_postprocess(outs[0])[0] boxes = predictions[:, :4] scores = predictions[:, 4:5] * predictions[:, 5:] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2. boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2. boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2. boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2. boxes_xyxy /= ratio dets = self.multiclass_nms(boxes_xyxy, scores) if dets is not None: final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] srcimg, detected_classes = self.vis(srcimg, final_boxes, final_scores, final_cls_inds) return srcimg, ", ".join(list(set(detected_classes))) if len(detected_classes) > 0 else ""