import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification saved_model = "Donlapark/finetuned_yelp" tokenizer = AutoTokenizer.from_pretrained("Donlapark/finetuned_yelp") model = AutoModelForSequenceClassification.from_pretrained("Donlapark/finetuned_yelp") def main(): st.title("Yelp review") with st.form("text_field"): text = st.text_area('enter some text:') # clicked==True only when the button is clicked clicked = st.form_submit_button("Submit") if clicked: sentence = tokenizer(text, return_tensors="pt") results = torch.softmax(model(**sentence).logits, axis=1).numpy()[0] st.write(f"Predicted review: {results.argmax()}, Score: {results.max()}") if __name__ == "__main__": main()