My-Project / app.py
Dorglorich's picture
Create app.py
a684a49 verified
raw
history blame
4.02 kB
import streamlit as st
import re
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import tensorflow as tf
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from gensim.models import Word2Vec
import matplotlib.pyplot as plt
import seaborn as sns
# for using TensorFlow for deep learning
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import categorical_crossentropy
# for using PyTorch for deep learning
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# Load your symptom-disease data
data = pd.read_csv("Symptom2Disease.csv")
# Initialize the TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer()
# Apply TF-IDF vectorization to the preprocessed text data
X = tfidf_vectorizer.fit_transform(data['text'])
# Split the dataset into a training set and a testing set
X_train, X_test, y_train, y_test = train_test_split(X, data['label'], test_size=0.2, random_state=42)
# Initialize the Multinomial Naive Bayes model
model = MultinomialNB()
# Train the model on the training data
model.fit(X_train, y_train)
# Set Streamlit app title with emojis
st.title("Healthcare Symptom-to-Disease Recommender πŸ₯πŸ‘¨β€βš•οΈ")
# Define a sidebar
st.sidebar.title("Tool Definition")
st.sidebar.markdown("This tool helps you identify possible diseases based on the symptoms you provide. It is not a substitute for professional medical advice. Always consult a healthcare professional for accurate diagnosis and treatment.")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Function to preprocess user input
def preprocess_input(user_input):
user_input = user_input.lower() # Convert to lowercase
user_input = re.sub(r"[^a-zA-Z\s]", "", user_input) # Remove special characters and numbers
user_input = " ".join(user_input.split()) # Remove extra spaces
return user_input
# Function to predict diseases based on user input
def predict_diseases(user_clean_text):
user_input_vector = tfidf_vectorizer.transform([user_clean_text]) # Vectorize the cleaned user input
predictions = model.predict(user_input_vector) # Make predictions using the trained model
return predictions
# Add user input section
user_input = st.text_area("Enter your symptoms (how you feel):", key="user_input")
# Add button to predict disease
if st.button("Predict Disease"):
# Display loading message
with st.spinner("Diagnosing patient..."):
# Check if user input is not empty
if user_input:
cleaned_input = preprocess_input(user_input)
predicted_diseases = predict_diseases(cleaned_input)
# Display predicted diseases
st.session_state.messages.append({"role": "user", "content": user_input})
st.session_state.messages.append({"role": "assistant", "content": f"Based on your symptoms, you might have {', '.join(predicted_diseases)}."})
st.write("Based on your symptoms, you might have:")
for disease in predicted_diseases:
st.write(f"- {disease}")
else:
st.warning("Please enter your symptoms before predicting.")
# Display a warning message
st.warning("Please note that this tool is for informational purposes only. Always consult a healthcare professional for accurate medical advice.")
# Add attribution
st.markdown("Created with ❀️ by Richard Dorglo")