import streamlit as st import re import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report import tensorflow as tf from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import classification_report, confusion_matrix, accuracy_score import nltk from nltk.corpus import stopwords from nltk.stem import PorterStemmer from gensim.models import Word2Vec import matplotlib.pyplot as plt import seaborn as sns # for using TensorFlow for deep learning from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import categorical_crossentropy # for using PyTorch for deep learning import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F # Load your symptom-disease data data = pd.read_csv("Symptom2Disease.csv") # Initialize the TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer() # Apply TF-IDF vectorization to the preprocessed text data X = tfidf_vectorizer.fit_transform(data['text']) # Split the dataset into a training set and a testing set X_train, X_test, y_train, y_test = train_test_split(X, data['label'], test_size=0.2, random_state=42) # Initialize the Multinomial Naive Bayes model model = MultinomialNB() # Train the model on the training data model.fit(X_train, y_train) # Set Streamlit app title with emojis st.title("Healthcare Symptom-to-Disease Recommender 🏥👨‍⚕️") # Define a sidebar st.sidebar.title("Tool Definition") st.sidebar.markdown("This tool helps you identify possible diseases based on the symptoms you provide. It is not a substitute for professional medical advice. Always consult a healthcare professional for accurate diagnosis and treatment.") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Function to preprocess user input def preprocess_input(user_input): user_input = user_input.lower() # Convert to lowercase user_input = re.sub(r"[^a-zA-Z\s]", "", user_input) # Remove special characters and numbers user_input = " ".join(user_input.split()) # Remove extra spaces return user_input # Function to predict diseases based on user input def predict_diseases(user_clean_text): user_input_vector = tfidf_vectorizer.transform([user_clean_text]) # Vectorize the cleaned user input predictions = model.predict(user_input_vector) # Make predictions using the trained model return predictions # Add user input section user_input = st.text_area("Enter your symptoms (how you feel):", key="user_input") # Add button to predict disease if st.button("Predict Disease"): # Display loading message with st.spinner("Diagnosing patient..."): # Check if user input is not empty if user_input: cleaned_input = preprocess_input(user_input) predicted_diseases = predict_diseases(cleaned_input) # Display predicted diseases st.session_state.messages.append({"role": "user", "content": user_input}) st.session_state.messages.append({"role": "assistant", "content": f"Based on your symptoms, you might have {', '.join(predicted_diseases)}."}) st.write("Based on your symptoms, you might have:") for disease in predicted_diseases: st.write(f"- {disease}") else: st.warning("Please enter your symptoms before predicting.") # Display a warning message st.warning("Please note that this tool is for informational purposes only. Always consult a healthcare professional for accurate medical advice.") # Add attribution st.markdown("Created ❤️ by Richard Dorglo")