|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
from threading import Lock |
|
|
|
|
|
model_name = "Dorian2B/Vera-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
device_map="auto" |
|
) |
|
model.eval() |
|
|
|
|
|
generate_lock = Lock() |
|
|
|
def format_prompt(history, new_message): |
|
"""Formate l'historique et le nouveau message pour le modèle.""" |
|
prompt = "" |
|
for user_msg, bot_msg in history: |
|
prompt += f"<|user|>{user_msg}</s>\n<|assistant|>{bot_msg}</s>\n" |
|
prompt += f"<|user|>{new_message}</s>\n<|assistant|>" |
|
return prompt |
|
|
|
def generate_stream(history, new_message): |
|
"""Génère une réponse en streaming avec contexte.""" |
|
prompt = format_prompt(history, new_message) |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
|
|
with generate_lock: |
|
with torch.no_grad(): |
|
for chunk in model.generate( |
|
**inputs, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
repetition_penalty=1.1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
streamer=None, |
|
): |
|
decoded = tokenizer.decode(chunk[0], skip_special_tokens=True) |
|
if decoded.startswith(prompt): |
|
decoded = decoded[len(prompt):] |
|
yield decoded.strip() |
|
|
|
def chat_interface(message, history): |
|
"""Fonction pour Gradio ChatInterface.""" |
|
full_response = "" |
|
for chunk in generate_stream(history, message): |
|
full_response += chunk |
|
yield full_response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=chat_interface, |
|
title="💬 Vera-Instruct Chat (avec Contexte & Streaming)", |
|
description="Discutez avec le modèle **Dorian2B/Vera-Instruct**.<br>Le modèle conserve le contexte de la conversation.", |
|
examples=["Bonjour ! Comment vas-tu ?", "Explique-moi l'IA générative."], |
|
theme="soft", |
|
retry_btn=None, |
|
undo_btn=None, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(debug=True) |