Spaces:
Running
on
Zero
Running
on
Zero
| import importlib | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| import torch.distributed as dist | |
| def count_params(model, verbose=False): | |
| total_params = sum(p.numel() for p in model.parameters()) | |
| if verbose: | |
| print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") | |
| return total_params | |
| def check_istarget(name, para_list): | |
| """ | |
| name: full name of source para | |
| para_list: partial name of target para | |
| """ | |
| istarget=False | |
| for para in para_list: | |
| if para in name: | |
| return True | |
| return istarget | |
| def instantiate_from_config(config): | |
| if not "target" in config: | |
| if config == '__is_first_stage__': | |
| return None | |
| elif config == "__is_unconditional__": | |
| return None | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def load_npz_from_dir(data_dir): | |
| data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)] | |
| data = np.concatenate(data, axis=0) | |
| return data | |
| def load_npz_from_paths(data_paths): | |
| data = [np.load(data_path)['arr_0'] for data_path in data_paths] | |
| data = np.concatenate(data, axis=0) | |
| return data | |
| def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): | |
| h, w = image.shape[:2] | |
| if resize_short_edge is not None: | |
| k = resize_short_edge / min(h, w) | |
| else: | |
| k = max_resolution / (h * w) | |
| k = k**0.5 | |
| h = int(np.round(h * k / 64)) * 64 | |
| w = int(np.round(w * k / 64)) * 64 | |
| image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) | |
| return image | |
| def setup_dist(args): | |
| if dist.is_initialized(): | |
| return | |
| torch.cuda.set_device(args.local_rank) | |
| torch.distributed.init_process_group( | |
| 'nccl', | |
| init_method='env://' | |
| ) |