|  | """ | 
					
						
						|  | E2E tests for multipack fft llama using 4d attention masks | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import unittest | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  | from axolotl.cli import load_datasets | 
					
						
						|  | from axolotl.common.cli import TrainerCliArgs | 
					
						
						|  | from axolotl.train import train | 
					
						
						|  | from axolotl.utils.config import normalize_config | 
					
						
						|  | from axolotl.utils.dict import DictDefault | 
					
						
						|  |  | 
					
						
						|  | from ..utils import require_torch_2_1_1, with_temp_dir | 
					
						
						|  |  | 
					
						
						|  | LOG = logging.getLogger("axolotl.tests.e2e") | 
					
						
						|  | os.environ["WANDB_DISABLED"] = "true" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Test4dMultipackLlama(unittest.TestCase): | 
					
						
						|  | """ | 
					
						
						|  | Test case for Llama models using 4d attention with multipack | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | @require_torch_2_1_1 | 
					
						
						|  | @with_temp_dir | 
					
						
						|  | def test_sdp_lora_packing(self, temp_dir): | 
					
						
						|  |  | 
					
						
						|  | cfg = DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "base_model": "JackFram/llama-68m", | 
					
						
						|  | "flash_attention": False, | 
					
						
						|  | "sdp_attention": True, | 
					
						
						|  | "sample_packing": True, | 
					
						
						|  | "pad_to_sequence_len": True, | 
					
						
						|  | "load_in_8bit": True, | 
					
						
						|  | "adapter": "lora", | 
					
						
						|  | "lora_r": 32, | 
					
						
						|  | "lora_alpha": 16, | 
					
						
						|  | "lora_dropout": 0.05, | 
					
						
						|  | "lora_target_linear": True, | 
					
						
						|  | "sequence_len": 1024, | 
					
						
						|  | "val_set_size": 0.1, | 
					
						
						|  | "datasets": [ | 
					
						
						|  | { | 
					
						
						|  | "path": "mhenrichsen/alpaca_2k_test", | 
					
						
						|  | "type": "alpaca", | 
					
						
						|  | }, | 
					
						
						|  | ], | 
					
						
						|  | "num_epochs": 2, | 
					
						
						|  | "micro_batch_size": 2, | 
					
						
						|  | "gradient_accumulation_steps": 1, | 
					
						
						|  | "output_dir": temp_dir, | 
					
						
						|  | "learning_rate": 0.00001, | 
					
						
						|  | "optimizer": "adamw_torch", | 
					
						
						|  | "lr_scheduler": "cosine", | 
					
						
						|  | "max_steps": 20, | 
					
						
						|  | "save_steps": 10, | 
					
						
						|  | "eval_steps": 10, | 
					
						
						|  | "fp16": True, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | normalize_config(cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  | dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | 
					
						
						|  |  | 
					
						
						|  | train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  | assert (Path(temp_dir) / "adapter_model.bin").exists() | 
					
						
						|  |  | 
					
						
						|  | @with_temp_dir | 
					
						
						|  | def test_torch_lora_packing(self, temp_dir): | 
					
						
						|  |  | 
					
						
						|  | cfg = DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "base_model": "JackFram/llama-68m", | 
					
						
						|  | "flash_attention": False, | 
					
						
						|  | "sdp_attention": False, | 
					
						
						|  | "sample_packing": True, | 
					
						
						|  | "pad_to_sequence_len": True, | 
					
						
						|  | "sequence_len": 1024, | 
					
						
						|  | "load_in_8bit": True, | 
					
						
						|  | "adapter": "lora", | 
					
						
						|  | "lora_r": 32, | 
					
						
						|  | "lora_alpha": 16, | 
					
						
						|  | "lora_dropout": 0.05, | 
					
						
						|  | "lora_target_linear": True, | 
					
						
						|  | "val_set_size": 0.1, | 
					
						
						|  | "datasets": [ | 
					
						
						|  | { | 
					
						
						|  | "path": "mhenrichsen/alpaca_2k_test", | 
					
						
						|  | "type": "alpaca", | 
					
						
						|  | }, | 
					
						
						|  | ], | 
					
						
						|  | "num_epochs": 2, | 
					
						
						|  | "micro_batch_size": 2, | 
					
						
						|  | "gradient_accumulation_steps": 1, | 
					
						
						|  | "output_dir": temp_dir, | 
					
						
						|  | "learning_rate": 0.00001, | 
					
						
						|  | "optimizer": "adamw_torch", | 
					
						
						|  | "lr_scheduler": "cosine", | 
					
						
						|  | "max_steps": 20, | 
					
						
						|  | "save_steps": 10, | 
					
						
						|  | "eval_steps": 10, | 
					
						
						|  | "fp16": True, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | normalize_config(cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  | dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | 
					
						
						|  |  | 
					
						
						|  | train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  | assert (Path(temp_dir) / "adapter_model.bin").exists() | 
					
						
						|  |  |