Unsloth optims for Llama (#1609)
Browse files* WIP for unsloth integrations
* import the unsloth code in the right context
* add unsloth mlp, qkv, o lora optimizations
* apply unsloth mlp and qkv kernels
src/axolotl/monkeypatch/unsloth_.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""module for patching with unsloth optimizations"""
|
| 2 |
+
|
| 3 |
+
import inspect
|
| 4 |
+
import logging
|
| 5 |
+
import re
|
| 6 |
+
import types
|
| 7 |
+
from typing import Tuple
|
| 8 |
+
|
| 9 |
+
from peft import PeftModelForCausalLM
|
| 10 |
+
from transformers.models.llama.modeling_llama import (
|
| 11 |
+
LlamaFlashAttention2,
|
| 12 |
+
LlamaForCausalLM,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
LOG = logging.getLogger("axolotl.monkeypatch.unsloth")
|
| 16 |
+
|
| 17 |
+
ORIGINAL_CEL_CODE = """ if labels is not None:
|
| 18 |
+
# Shift so that tokens < n predict n
|
| 19 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 20 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 21 |
+
# Flatten the tokens
|
| 22 |
+
loss_fct = CrossEntropyLoss()
|
| 23 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 24 |
+
shift_labels = shift_labels.view(-1)
|
| 25 |
+
# Enable model parallelism
|
| 26 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 27 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
PATCHED_CEL_CODE = """ if labels is not None:
|
| 31 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 32 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 33 |
+
loss = fast_cross_entropy_loss(
|
| 34 |
+
logits = shift_logits,
|
| 35 |
+
labels = shift_labels,
|
| 36 |
+
)
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
ORIGINAL_QKV_CODE = """
|
| 40 |
+
query_states = self.q_proj(hidden_states)
|
| 41 |
+
key_states = self.k_proj(hidden_states)
|
| 42 |
+
value_states = self.v_proj(hidden_states)
|
| 43 |
+
""".lstrip(
|
| 44 |
+
"\n"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
PATCHED_QKV_CODE = """
|
| 48 |
+
query_states, key_states, value_states = self.apply_qkv(self, hidden_states)
|
| 49 |
+
""".lstrip(
|
| 50 |
+
"\n"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
ORIGINAL_O_CODE = """
|
| 54 |
+
attn_output = self.o_proj(attn_output)
|
| 55 |
+
""".lstrip(
|
| 56 |
+
"\n"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
PATCHED_O_CODE = """
|
| 60 |
+
attn_output = self.apply_o(self, attn_output)
|
| 61 |
+
""".lstrip(
|
| 62 |
+
"\n"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def original_apply_qkv(self, hidden_states):
|
| 67 |
+
query_states = self.q_proj(hidden_states)
|
| 68 |
+
key_states = self.k_proj(hidden_states)
|
| 69 |
+
value_states = self.v_proj(hidden_states)
|
| 70 |
+
return query_states, key_states, value_states
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def original_apply_o(self, hidden_states):
|
| 74 |
+
attn_output = self.o_proj(hidden_states)
|
| 75 |
+
return attn_output
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_forward_code() -> str:
|
| 79 |
+
forward = inspect.getsource(LlamaForCausalLM.forward)
|
| 80 |
+
return forward
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def test_cel_is_patchable() -> bool:
|
| 84 |
+
forward = get_forward_code()
|
| 85 |
+
return ORIGINAL_CEL_CODE in forward
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def get_self_attn_code() -> str:
|
| 89 |
+
forward = inspect.getsource(LlamaFlashAttention2.forward)
|
| 90 |
+
return forward
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def test_self_attn_is_patchable() -> bool:
|
| 94 |
+
qkv = get_self_attn_code()
|
| 95 |
+
return ORIGINAL_QKV_CODE in qkv and ORIGINAL_QKV_CODE in qkv
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def integrate_cross_entropy_loss_patch():
|
| 99 |
+
forward = get_forward_code()
|
| 100 |
+
LlamaForCausalLM._original_forward = forward # pylint: disable=protected-access
|
| 101 |
+
forward, _ = detab_code(forward)
|
| 102 |
+
assert ORIGINAL_CEL_CODE in forward, "Original forward code not found"
|
| 103 |
+
|
| 104 |
+
forward = forward.replace(
|
| 105 |
+
"@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)", ""
|
| 106 |
+
)
|
| 107 |
+
forward = forward.replace(
|
| 108 |
+
"@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)",
|
| 109 |
+
"",
|
| 110 |
+
)
|
| 111 |
+
forward = forward.replace(ORIGINAL_CEL_CODE, PATCHED_CEL_CODE)
|
| 112 |
+
forward = forward.replace(
|
| 113 |
+
"def forward(",
|
| 114 |
+
"def fast_cross_entropy_loss_forward(",
|
| 115 |
+
1,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# load imports necessary
|
| 119 |
+
import transformers.models.llama.modeling_llama
|
| 120 |
+
|
| 121 |
+
items_to_import = []
|
| 122 |
+
for item in dir(transformers.models.llama.modeling_llama):
|
| 123 |
+
if item in forward:
|
| 124 |
+
items_to_import.append(item)
|
| 125 |
+
|
| 126 |
+
exec( # pylint: disable=exec-used # nosec B102
|
| 127 |
+
"from unsloth.kernels.cross_entropy_loss import fast_cross_entropy_loss",
|
| 128 |
+
globals(),
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
exec( # pylint: disable=exec-used # nosec B102
|
| 132 |
+
"from transformers.models.llama.modeling_llama import ("
|
| 133 |
+
+ ", ".join(x for x in items_to_import)
|
| 134 |
+
+ ")",
|
| 135 |
+
globals(),
|
| 136 |
+
)
|
| 137 |
+
exec(forward, globals()) # pylint: disable=exec-used # nosec B102
|
| 138 |
+
print("patching unsloth fast_cross_entropy_loss")
|
| 139 |
+
LlamaForCausalLM.forward = fast_cross_entropy_loss_forward # pylint: disable=undefined-variable # noqa: F821
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def detab_code(code: str) -> Tuple[str, str]:
|
| 143 |
+
spaces = re.match(r"([\s\t]{1,})", code).group(0)
|
| 144 |
+
code = re.sub(r"^" + spaces, "", code, flags=re.MULTILINE)
|
| 145 |
+
return code, spaces
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def patch_self_attn_lora():
|
| 149 |
+
self_attn_forward = get_self_attn_code()
|
| 150 |
+
LlamaFlashAttention2._original_forward = ( # pylint: disable=protected-access
|
| 151 |
+
self_attn_forward
|
| 152 |
+
)
|
| 153 |
+
self_attn_forward, _ = detab_code(self_attn_forward)
|
| 154 |
+
assert ORIGINAL_QKV_CODE in self_attn_forward, "Original qkv code not found"
|
| 155 |
+
assert ORIGINAL_O_CODE in self_attn_forward, "Original o code not found"
|
| 156 |
+
|
| 157 |
+
self_attn_forward = self_attn_forward.replace(ORIGINAL_QKV_CODE, PATCHED_QKV_CODE)
|
| 158 |
+
self_attn_forward = self_attn_forward.replace(ORIGINAL_O_CODE, PATCHED_O_CODE)
|
| 159 |
+
self_attn_forward = self_attn_forward.replace(
|
| 160 |
+
"def forward(",
|
| 161 |
+
"def unsloth_attn_forward(",
|
| 162 |
+
1,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# load imports necessary
|
| 166 |
+
import transformers.models.llama.modeling_llama
|
| 167 |
+
|
| 168 |
+
items_to_import = []
|
| 169 |
+
for item in dir(transformers.models.llama.modeling_llama):
|
| 170 |
+
if item in self_attn_forward:
|
| 171 |
+
items_to_import.append(item)
|
| 172 |
+
|
| 173 |
+
exec( # pylint: disable=exec-used # nosec B102
|
| 174 |
+
"from transformers.models.llama.modeling_llama import ("
|
| 175 |
+
+ ", ".join(x for x in items_to_import)
|
| 176 |
+
+ ")",
|
| 177 |
+
globals(),
|
| 178 |
+
)
|
| 179 |
+
exec(self_attn_forward, globals()) # pylint: disable=exec-used # nosec B102
|
| 180 |
+
print("patching unsloth attn lora")
|
| 181 |
+
LlamaFlashAttention2.forward = (
|
| 182 |
+
unsloth_attn_forward # pylint: disable=undefined-variable # noqa: F821
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def integrate_lora_mlp_patch(peft_model: PeftModelForCausalLM):
|
| 187 |
+
if peft_model.base_model.config.model_type in ["llama", "mistral"]:
|
| 188 |
+
from unsloth.kernels import apply_lora_mlp_swiglu
|
| 189 |
+
|
| 190 |
+
apply_lora_mlp = apply_lora_mlp_swiglu
|
| 191 |
+
elif peft_model.base_model.config.model_type == "gemma":
|
| 192 |
+
from unsloth.kernels import apply_lora_mlp_geglu_approx
|
| 193 |
+
|
| 194 |
+
apply_lora_mlp = apply_lora_mlp_geglu_approx
|
| 195 |
+
else:
|
| 196 |
+
raise NotImplementedError(
|
| 197 |
+
f"Model type {peft_model.base_model.config.model_type} not supported"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
for idx, layer in enumerate(peft_model.model.model.layers):
|
| 201 |
+
layer_modules = [
|
| 202 |
+
getattr(layer.mlp, linear_proj)
|
| 203 |
+
for linear_proj in ["gate_proj", "up_proj", "down_proj"]
|
| 204 |
+
]
|
| 205 |
+
is_mlp_lora = all(hasattr(module, "lora_A") for module in layer_modules)
|
| 206 |
+
mlp_no_bias = all(
|
| 207 |
+
getattr(module, "base_layer", module).bias is None
|
| 208 |
+
for module in layer_modules
|
| 209 |
+
)
|
| 210 |
+
mlp_not_dora = all(
|
| 211 |
+
getattr(module, "lora_magnitude_vector", None) is None
|
| 212 |
+
for module in layer_modules
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
if is_mlp_lora and mlp_no_bias and mlp_not_dora:
|
| 216 |
+
layer.mlp.forward = types.MethodType(apply_lora_mlp, layer.mlp)
|
| 217 |
+
else:
|
| 218 |
+
logging.warning("unable to apply unsloth lora mlp patch to layer %d", idx)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def integrate_lora_patch(peft_model: PeftModelForCausalLM, cfg):
|
| 222 |
+
from unsloth.kernels import apply_lora_o, apply_lora_qkv
|
| 223 |
+
|
| 224 |
+
for idx, layer in enumerate(peft_model.model.model.layers):
|
| 225 |
+
if cfg.unsloth_lora_qkv:
|
| 226 |
+
layer_modules = [
|
| 227 |
+
getattr(layer.self_attn, linear_proj)
|
| 228 |
+
for linear_proj in ["q_proj", "k_proj", "v_proj"]
|
| 229 |
+
]
|
| 230 |
+
is_qkv_lora = all(hasattr(module, "lora_A") for module in layer_modules)
|
| 231 |
+
qkv_no_bias = all(
|
| 232 |
+
getattr(module, "base_layer", module).bias is None
|
| 233 |
+
for module in layer_modules
|
| 234 |
+
)
|
| 235 |
+
qkv_not_dora = all(
|
| 236 |
+
getattr(module, "lora_magnitude_vector", None) is None
|
| 237 |
+
for module in layer_modules
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
if is_qkv_lora and qkv_no_bias and qkv_not_dora:
|
| 241 |
+
layer.self_attn.apply_qkv = apply_lora_qkv
|
| 242 |
+
else:
|
| 243 |
+
layer.self_attn.apply_qkv = original_apply_qkv
|
| 244 |
+
logging.warning(
|
| 245 |
+
"unable to apply unsloth lora qkv patch to layer %d", idx
|
| 246 |
+
)
|
| 247 |
+
if cfg.unsloth_lora_o:
|
| 248 |
+
layer_modules = [
|
| 249 |
+
getattr(layer.self_attn, linear_proj) for linear_proj in ["o_proj"]
|
| 250 |
+
]
|
| 251 |
+
is_o_lora = all(hasattr(module, "lora_A") for module in layer_modules)
|
| 252 |
+
o_no_bias = all(
|
| 253 |
+
getattr(module, "base_layer", module).bias is None
|
| 254 |
+
for module in layer_modules
|
| 255 |
+
)
|
| 256 |
+
o_not_dora = all(
|
| 257 |
+
getattr(module, "lora_magnitude_vector", None) is None
|
| 258 |
+
for module in layer_modules
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
if is_o_lora and o_no_bias and o_not_dora:
|
| 262 |
+
layer.self_attn.apply_o = apply_lora_o
|
| 263 |
+
else:
|
| 264 |
+
layer.self_attn.apply_o = original_apply_o
|
| 265 |
+
logging.warning(
|
| 266 |
+
"unable to apply unsloth lora o_proj patch to layer %d", idx
|
| 267 |
+
)
|
src/axolotl/utils/config/models/input/v0_4_1/__init__.py
CHANGED
|
@@ -549,6 +549,11 @@ class AxolotlInputConfig(
|
|
| 549 |
flash_attn_fuse_mlp: Optional[bool] = None
|
| 550 |
flash_optimum: Optional[bool] = None
|
| 551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
deepspeed: Optional[Union[str, Dict[str, Any]]] = None
|
| 553 |
fsdp: Optional[List[str]] = None
|
| 554 |
fsdp_config: Optional[Dict[str, Any]] = None
|
|
|
|
| 549 |
flash_attn_fuse_mlp: Optional[bool] = None
|
| 550 |
flash_optimum: Optional[bool] = None
|
| 551 |
|
| 552 |
+
unsloth_cross_entropy_loss: Optional[bool] = None
|
| 553 |
+
unsloth_lora_mlp: Optional[bool] = None
|
| 554 |
+
unsloth_lora_qkv: Optional[bool] = None
|
| 555 |
+
unsloth_lora_o: Optional[bool] = None
|
| 556 |
+
|
| 557 |
deepspeed: Optional[Union[str, Dict[str, Any]]] = None
|
| 558 |
fsdp: Optional[List[str]] = None
|
| 559 |
fsdp_config: Optional[Dict[str, Any]] = None
|
src/axolotl/utils/models.py
CHANGED
|
@@ -390,6 +390,16 @@ def load_model(
|
|
| 390 |
"Shifted-sparse attention not currently implemented without flash attention."
|
| 391 |
)
|
| 392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
# Modify mistral derived models
|
| 394 |
if (
|
| 395 |
cfg.model_config_type == "mistral"
|
|
@@ -828,6 +838,15 @@ def load_model(
|
|
| 828 |
if cfg.adapter is not None:
|
| 829 |
log_gpu_memory_usage(LOG, "after adapters", model.device)
|
| 830 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 831 |
# TODO resume_from_checkpoint handling
|
| 832 |
return model, lora_config
|
| 833 |
|
|
|
|
| 390 |
"Shifted-sparse attention not currently implemented without flash attention."
|
| 391 |
)
|
| 392 |
|
| 393 |
+
if cfg.unsloth_cross_entropy_loss:
|
| 394 |
+
from axolotl.monkeypatch.unsloth_ import integrate_cross_entropy_loss_patch
|
| 395 |
+
|
| 396 |
+
integrate_cross_entropy_loss_patch()
|
| 397 |
+
|
| 398 |
+
if cfg.unsloth_lora_qkv or cfg.unsloth_lora_o:
|
| 399 |
+
from axolotl.monkeypatch.unsloth_ import patch_self_attn_lora
|
| 400 |
+
|
| 401 |
+
patch_self_attn_lora()
|
| 402 |
+
|
| 403 |
# Modify mistral derived models
|
| 404 |
if (
|
| 405 |
cfg.model_config_type == "mistral"
|
|
|
|
| 838 |
if cfg.adapter is not None:
|
| 839 |
log_gpu_memory_usage(LOG, "after adapters", model.device)
|
| 840 |
|
| 841 |
+
if cfg.unsloth_lora_mlp:
|
| 842 |
+
from axolotl.monkeypatch.unsloth_ import integrate_lora_mlp_patch
|
| 843 |
+
|
| 844 |
+
integrate_lora_mlp_patch(model)
|
| 845 |
+
if cfg.unsloth_lora_qkv or cfg.unsloth_lora_o:
|
| 846 |
+
from axolotl.monkeypatch.unsloth_ import integrate_lora_patch
|
| 847 |
+
|
| 848 |
+
integrate_lora_patch(model, cfg)
|
| 849 |
+
|
| 850 |
# TODO resume_from_checkpoint handling
|
| 851 |
return model, lora_config
|
| 852 |
|