Add StableLM 2 Example Scripts (#1327) [skip ci]
Browse files* Add StableLM examples and configurations
* Add FFT and LORA configuration files and modify readme with usage
examples/stablelm-2/1.6b/fft.yml
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: stabilityai/stablelm-2-1_6b
|
| 2 |
+
model_type: AutoModelForCausalLM
|
| 3 |
+
tokenizer_type: AutoTokenizer
|
| 4 |
+
trust_remote_code: true
|
| 5 |
+
|
| 6 |
+
load_in_8bit: false
|
| 7 |
+
load_in_4bit: false
|
| 8 |
+
strict: false
|
| 9 |
+
|
| 10 |
+
datasets:
|
| 11 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 12 |
+
type: alpaca
|
| 13 |
+
dataset_prepared_path: last_run_prepared
|
| 14 |
+
val_set_size: 0.05
|
| 15 |
+
output_dir: ./out
|
| 16 |
+
|
| 17 |
+
sequence_len: 4096
|
| 18 |
+
sample_packing: true
|
| 19 |
+
pad_to_sequence_len: true
|
| 20 |
+
|
| 21 |
+
adapter:
|
| 22 |
+
lora_model_dir:
|
| 23 |
+
lora_r:
|
| 24 |
+
lora_alpha:
|
| 25 |
+
lora_dropout:
|
| 26 |
+
lora_target_linear:
|
| 27 |
+
lora_fan_in_fan_out:
|
| 28 |
+
|
| 29 |
+
wandb_project:
|
| 30 |
+
wandb_entity:
|
| 31 |
+
wandb_watch:
|
| 32 |
+
wandb_name:
|
| 33 |
+
wandb_log_model:
|
| 34 |
+
|
| 35 |
+
gradient_accumulation_steps: 1
|
| 36 |
+
micro_batch_size: 1
|
| 37 |
+
num_epochs: 1
|
| 38 |
+
optimizer: adamw_bnb_8bit
|
| 39 |
+
lr_scheduler: cosine
|
| 40 |
+
learning_rate: 0.0002
|
| 41 |
+
|
| 42 |
+
train_on_inputs: false
|
| 43 |
+
group_by_length: false
|
| 44 |
+
bf16: auto
|
| 45 |
+
fp16:
|
| 46 |
+
tf32: false
|
| 47 |
+
|
| 48 |
+
gradient_checkpointing: true
|
| 49 |
+
early_stopping_patience:
|
| 50 |
+
resume_from_checkpoint:
|
| 51 |
+
local_rank:
|
| 52 |
+
logging_steps: 1
|
| 53 |
+
xformers_attention:
|
| 54 |
+
flash_attention: true
|
| 55 |
+
flash_attn_cross_entropy: false
|
| 56 |
+
flash_attn_rms_norm: true
|
| 57 |
+
flash_attn_fuse_qkv: false
|
| 58 |
+
flash_attn_fuse_mlp: true
|
| 59 |
+
|
| 60 |
+
warmup_steps: 100
|
| 61 |
+
evals_per_epoch: 4
|
| 62 |
+
eval_table_size:
|
| 63 |
+
saves_per_epoch: 1
|
| 64 |
+
debug:
|
| 65 |
+
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
|
| 66 |
+
weight_decay: 0.1
|
| 67 |
+
fsdp:
|
| 68 |
+
fsdp_config:
|
| 69 |
+
special_tokens:
|
examples/stablelm-2/1.6b/lora.yml
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: stabilityai/stablelm-2-1_6b
|
| 2 |
+
model_type: AutoModelForCausalLM
|
| 3 |
+
tokenizer_type: AutoTokenizer
|
| 4 |
+
trust_remote_code: true
|
| 5 |
+
|
| 6 |
+
load_in_8bit: true
|
| 7 |
+
load_in_4bit: false
|
| 8 |
+
strict: false
|
| 9 |
+
|
| 10 |
+
datasets:
|
| 11 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 12 |
+
type: alpaca
|
| 13 |
+
dataset_prepared_path:
|
| 14 |
+
val_set_size: 0.05
|
| 15 |
+
output_dir: ./lora-out
|
| 16 |
+
|
| 17 |
+
sequence_len: 4096
|
| 18 |
+
sample_packing: true
|
| 19 |
+
pad_to_sequence_len: true
|
| 20 |
+
|
| 21 |
+
adapter: lora
|
| 22 |
+
lora_model_dir:
|
| 23 |
+
lora_r: 32
|
| 24 |
+
lora_alpha: 16
|
| 25 |
+
lora_dropout: 0.05
|
| 26 |
+
lora_target_linear: true
|
| 27 |
+
lora_fan_in_fan_out:
|
| 28 |
+
|
| 29 |
+
wandb_project:
|
| 30 |
+
wandb_entity:
|
| 31 |
+
wandb_watch:
|
| 32 |
+
wandb_name:
|
| 33 |
+
wandb_log_model:
|
| 34 |
+
|
| 35 |
+
gradient_accumulation_steps: 1
|
| 36 |
+
micro_batch_size: 1
|
| 37 |
+
num_epochs: 1
|
| 38 |
+
optimizer: adamw_bnb_8bit
|
| 39 |
+
lr_scheduler: cosine
|
| 40 |
+
learning_rate: 0.0002
|
| 41 |
+
|
| 42 |
+
train_on_inputs: false
|
| 43 |
+
group_by_length: false
|
| 44 |
+
bf16: auto
|
| 45 |
+
fp16:
|
| 46 |
+
tf32: false
|
| 47 |
+
|
| 48 |
+
gradient_checkpointing: true
|
| 49 |
+
early_stopping_patience:
|
| 50 |
+
resume_from_checkpoint:
|
| 51 |
+
local_rank:
|
| 52 |
+
logging_steps: 1
|
| 53 |
+
xformers_attention:
|
| 54 |
+
flash_attention: true
|
| 55 |
+
flash_attn_cross_entropy: false
|
| 56 |
+
flash_attn_rms_norm: true
|
| 57 |
+
|
| 58 |
+
warmup_steps: 10
|
| 59 |
+
evals_per_epoch: 4
|
| 60 |
+
saves_per_epoch: 1
|
| 61 |
+
debug:
|
| 62 |
+
deepspeed:
|
| 63 |
+
weight_decay: 0.0
|
| 64 |
+
fsdp:
|
| 65 |
+
fsdp_config:
|
| 66 |
+
special_tokens:
|
examples/stablelm-2/README.md
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# StableLM 2
|
| 2 |
+
|
| 3 |
+
This repository contains examples for training and processing using StableLM-2. It also includes a section to help you estimate the GPU requirements for your specific use case.
|
| 4 |
+
|
| 5 |
+
## Estimating GPU Requirements
|
| 6 |
+
|
| 7 |
+
| type | deepspeed | batch size | context length | vRAM GPU (GBs) |
|
| 8 |
+
|---------------|-----------|------------|----------------|----------------|
|
| 9 |
+
| full finetune | N/A | 1 | 4096 | ~21.5GBs |
|
| 10 |
+
| full finetune | zero2 | 1 | 4096 | ~20GBs |
|
| 11 |
+
| lora | N/A | 1 | 4096 | ~16.6GBs |
|
| 12 |
+
|
| 13 |
+
The above are estimates and might differ slight depending on the setup for example whether you pack your sequence lengths or not (the above assumes you do to length 4096).
|
| 14 |
+
|
| 15 |
+
This blog post from Hamel Husain was a great resource for estimating these numbers: https://hamel.dev/notes/llm/03_estimating_vram.html
|
| 16 |
+
|
| 17 |
+
## Training
|
| 18 |
+
We have example scripts here for both full finetuning and lora using the popular alpaca dataset:
|
| 19 |
+
|
| 20 |
+
```shell
|
| 21 |
+
# preprocess the dataset
|
| 22 |
+
CUDA_VISIBLE_DEVICES="" python -m axolotl.cli.preprocess examples/stablelm-2/1.6b/lora.yml
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
Single GPU Training:
|
| 26 |
+
```shell
|
| 27 |
+
python -m axolotl.cli.train examples/stablelm-2/fft.yml --deepspeed deepspeed_configs/zero2.json
|
| 28 |
+
# OR
|
| 29 |
+
python -m axolotl.cli.train examples/stablelm-2/1.6b/lora.yml
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
Multinode GPU Training with `accelerate`:
|
| 33 |
+
```shell
|
| 34 |
+
# make sure you've configured accelerate properly
|
| 35 |
+
accelerate launch -m axolotl.cli.train examples/stablelm-2/1.6b/fft.yml --deepspeed deepspeed_configs/zero2.json
|
| 36 |
+
```
|