Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,262 +1,171 @@
|
|
1 |
-
# app.py
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
-
from bs4 import BeautifulSoup
|
6 |
import datetime
|
7 |
import pytz
|
8 |
import math
|
9 |
import re
|
10 |
import requests
|
11 |
-
from transformers import HfAgent # Your successful import
|
12 |
-
from transformers.tools import Tool # Your successful import
|
13 |
-
from transformers import pipeline # <<< --- MAKE SURE THIS IMPORT IS ADDED / PRESENT
|
14 |
import traceback
|
15 |
-
|
16 |
import sys
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
import
|
21 |
-
from
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
print("--- Successfully imported HfAgent directly from transformers! ---")
|
30 |
-
except ImportError as e:
|
31 |
-
print(f"--- FAILED to import HfAgent directly from transformers: {e} ---")
|
32 |
-
# This should ideally not happen now
|
33 |
-
raise
|
34 |
-
except Exception as e_gen:
|
35 |
-
print(f"--- Some other UNEXPECTED error during HfAgent import: {e_gen} ---")
|
36 |
-
raise
|
37 |
-
|
38 |
-
print("--- If no errors above, imports were successful. Proceeding with rest of app. ---")
|
39 |
-
|
40 |
-
# (Keep Constants as is)
|
41 |
# --- Constants ---
|
42 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
"""
|
50 |
print(f"--- Tool: Executing get_current_time_in_timezone for: {timezone} ---")
|
51 |
try:
|
52 |
tz = pytz.timezone(timezone)
|
53 |
-
# Added %Z (timezone name) and %z (UTC offset)
|
54 |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S %Z%z")
|
55 |
return f"The current local time in {timezone} is: {local_time}"
|
56 |
except pytz.exceptions.UnknownTimeZoneError:
|
57 |
-
|
58 |
-
return f"Error: Unknown timezone '{timezone}'. Please use a valid IANA timezone name (e.g., 'America/Denver', 'UTC')."
|
59 |
except Exception as e:
|
60 |
-
print(f"Error fetching time for timezone '{timezone}': {str(e)}")
|
61 |
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
query (str): The search query string.
|
70 |
-
|
71 |
-
Returns:
|
72 |
-
str: A string containing the summarized search results (titles and snippets of top hits), or an error message if the search fails.
|
73 |
-
"""
|
74 |
-
print(f"--- Tool: Executing web_search with query: {query} ---")
|
75 |
-
try:
|
76 |
-
search_url = "https://html.duckduckgo.com/html/"
|
77 |
-
params = {"q": query}
|
78 |
-
headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36'} # Common user agent
|
79 |
-
|
80 |
-
response = requests.post(search_url, data=params, headers=headers, timeout=15) # Increased timeout
|
81 |
-
response.raise_for_status() # Check for HTTP errors (4xx or 5xx)
|
82 |
-
|
83 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
84 |
-
results = soup.find_all('div', class_='result__body') # Find result containers
|
85 |
-
|
86 |
-
snippets = []
|
87 |
-
for i, result in enumerate(results[:3]): # Get top 3 results for brevity
|
88 |
-
title_tag = result.find('a', class_='result__a')
|
89 |
-
snippet_tag = result.find('a', class_='result__snippet')
|
90 |
-
title = title_tag.get_text(strip=True) if title_tag else "No Title"
|
91 |
-
snippet = snippet_tag.get_text(strip=True) if snippet_tag else "No Snippet"
|
92 |
-
if snippet != "No Snippet": # Only include results with a snippet
|
93 |
-
snippets.append(f"Result {i+1}: {title} - {snippet}")
|
94 |
-
|
95 |
-
if not snippets:
|
96 |
-
return "No search results with relevant snippets found."
|
97 |
-
|
98 |
-
return "\n".join(snippets)
|
99 |
-
|
100 |
-
except requests.exceptions.Timeout:
|
101 |
-
print(f"Error during web search request: Timeout")
|
102 |
-
return "Error: The web search request timed out."
|
103 |
-
except requests.exceptions.RequestException as e:
|
104 |
-
print(f"Error during web search request: {e}")
|
105 |
-
return f"Error: Could not perform web search. Network issue: {e}"
|
106 |
-
except Exception as e:
|
107 |
-
print(f"Error processing web search results: {e}")
|
108 |
-
return f"Error: Could not process search results. {e}"
|
109 |
-
|
110 |
-
def safe_calculator(expression: str) -> str:
|
111 |
-
"""
|
112 |
-
Evaluates a simple mathematical expression involving numbers, +, -, *, /, %, parentheses, and the math functions: sqrt, pow.
|
113 |
-
Use this tool *only* for calculations. Do not use it to run other code.
|
114 |
-
|
115 |
-
Args:
|
116 |
-
expression (str): The mathematical expression string (e.g., "(2 + 3) * 4", "pow(2, 5)", "sqrt(16)").
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
"""
|
121 |
print(f"--- Tool: Executing safe_calculator with expression: {expression} ---")
|
122 |
try:
|
123 |
-
#
|
124 |
-
|
125 |
-
pattern = r"^[0-9eE\.\+\-\*\/\%\(\)\s]*(sqrt|pow)?[0-9eE\.\+\-\*\/\%\(\)\s\,]*$"
|
126 |
-
if not re.match(pattern, expression):
|
127 |
-
# Fallback simple pattern check (less precise)
|
128 |
-
allowed_chars_pattern = r"^[0-9eE\.\+\-\*\/\%\(\)\s\,sqrtpow]+$"
|
129 |
-
if not re.match(allowed_chars_pattern, expression):
|
130 |
-
raise ValueError(f"Expression '{expression}' contains disallowed characters.")
|
131 |
-
|
132 |
-
# Define allowed functions/names for eval's context
|
133 |
-
allowed_names = {
|
134 |
-
"sqrt": math.sqrt,
|
135 |
-
"pow": math.pow,
|
136 |
-
# Add other safe math functions if needed e.g. "log": math.log
|
137 |
-
}
|
138 |
-
# Evaluate the expression in a restricted environment
|
139 |
-
# Limited builtins, only allowed names are accessible.
|
140 |
result = eval(expression, {"__builtins__": {}}, allowed_names)
|
141 |
-
|
142 |
-
# Ensure the result is a number before converting to string
|
143 |
-
if not isinstance(result, (int, float)):
|
144 |
-
raise ValueError("Calculation did not produce a numerical result.")
|
145 |
-
|
146 |
return str(result)
|
147 |
except Exception as e:
|
148 |
-
# Catch potential errors during eval (SyntaxError, NameError, TypeError etc.) or from the checks
|
149 |
print(f"Error during calculation for '{expression}': {e}")
|
150 |
return f"Error calculating '{expression}': Invalid expression or calculation error ({e})."
|
151 |
|
152 |
-
# --- Custom Agent to Force Correct Behavior ---
|
153 |
-
class MyCustomHfAgent(HfAgent):
|
154 |
-
"""
|
155 |
-
A custom agent that inherits from HfAgent to override the text generation method,
|
156 |
-
forcing it to use the local pipeline instead of attempting a faulty web request.
|
157 |
-
"""
|
158 |
-
def generate_one(self, prompt: str, stop: list):
|
159 |
-
print("--- INSIDE CUSTOM HfAgent's generate_one method ---")
|
160 |
-
|
161 |
-
# This is the crucial check. We're logging what the agent thinks its state is.
|
162 |
-
is_pipeline = self.llm.is_hf_pipeline if hasattr(self.llm, "is_hf_pipeline") else "LLM has no is_hf_pipeline attr"
|
163 |
-
print(f"--> self.llm.is_hf_pipeline is: {is_pipeline}")
|
164 |
-
|
165 |
-
# Regardless of what the agent thinks, we KNOW we gave it a pipeline.
|
166 |
-
# So, we will force it to execute the code path for local pipelines.
|
167 |
-
print("--> Forcing execution of the local pipeline path...")
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
processed_prompt = self.llm.processor.process_prompt(prompt, **self.tokenizer_kwargs)
|
172 |
-
model_outputs = self.llm.pipeline(processed_prompt, stop_sequence=stop, **self.generate_kwargs)
|
173 |
-
return self.llm.processor.process_outputs(model_outputs, stop_sequence=stop)
|
174 |
-
except Exception as e:
|
175 |
-
print(f"--- ERROR during forced pipeline execution: {e} ---")
|
176 |
-
traceback.print_exc()
|
177 |
-
# If this fails, we return an error string.
|
178 |
-
return f"Error during custom pipeline execution: {e}"
|
179 |
-
|
180 |
-
# --- Agent Definition using HfAgent ---
|
181 |
-
class HfAgentWrapper:
|
182 |
def __init__(self):
|
183 |
-
print("Initializing
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
186 |
try:
|
187 |
-
|
188 |
-
hf_auth_token = os.getenv("HF_TOKEN") # Secret should be named HF_TOKEN
|
189 |
if not hf_auth_token:
|
190 |
-
|
191 |
-
# Starcoderbase is gated, so this is needed.
|
192 |
-
raise ValueError("HF_TOKEN secret is missing and is required for this model.")
|
193 |
else:
|
194 |
-
print(
|
195 |
-
|
196 |
-
#
|
197 |
-
|
198 |
-
llm_pipeline = pipeline(
|
199 |
-
|
200 |
-
model=
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
print("Successfully created LLM pipeline object.")
|
205 |
-
|
206 |
-
# --- Step 2: Ensure your tools are created WITH proper names ---
|
207 |
-
if not get_current_time_in_timezone.__doc__: raise ValueError("Tool 'get_current_time_in_timezone' is missing a docstring.")
|
208 |
-
if not web_search.__doc__: raise ValueError("Tool 'web_search' is missing a docstring.")
|
209 |
-
if not safe_calculator.__doc__: raise ValueError("Tool 'safe_calculator' is missing a docstring.")
|
210 |
-
|
211 |
-
time_tool_obj = Tool(
|
212 |
-
name=get_current_time_in_timezone.__name__, # Use the function's name
|
213 |
-
func=get_current_time_in_timezone,
|
214 |
-
description=get_current_time_in_timezone.__doc__
|
215 |
-
)
|
216 |
-
search_tool_obj = Tool(
|
217 |
-
name=web_search.__name__, # Use the function's name
|
218 |
-
func=web_search,
|
219 |
-
description=web_search.__doc__
|
220 |
)
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
)
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
self.
|
232 |
-
print("
|
233 |
|
234 |
except Exception as e:
|
235 |
-
print(f"CRITICAL ERROR: Failed to initialize
|
236 |
-
print("Full traceback of HfAgent/Pipeline initialization error:")
|
237 |
traceback.print_exc()
|
238 |
-
raise RuntimeError(f"
|
239 |
|
240 |
-
# The __call__ method remains the same
|
241 |
def __call__(self, question: str) -> str:
|
242 |
-
print(f"\n---
|
243 |
try:
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
247 |
except Exception as e:
|
248 |
-
print(f"ERROR:
|
249 |
-
print("Full traceback of HfAgent execution error:")
|
250 |
traceback.print_exc()
|
251 |
return f"Agent Error: Failed to process the question. Details: {e}"
|
252 |
|
253 |
-
|
|
|
254 |
"""
|
255 |
-
Fetches all questions, runs the
|
256 |
and displays the results.
|
257 |
"""
|
258 |
-
|
259 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
260 |
|
261 |
if profile:
|
262 |
username= f"{profile.username}"
|
@@ -269,38 +178,29 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
269 |
questions_url = f"{api_url}/questions"
|
270 |
submit_url = f"{api_url}/submit"
|
271 |
|
272 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
273 |
try:
|
274 |
-
|
|
|
275 |
except Exception as e:
|
276 |
print(f"Error instantiating agent: {e}")
|
277 |
return f"Error initializing agent: {e}", None
|
278 |
-
|
279 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
280 |
print(agent_code)
|
281 |
|
282 |
-
# 2. Fetch Questions
|
283 |
print(f"Fetching questions from: {questions_url}")
|
284 |
try:
|
285 |
response = requests.get(questions_url, timeout=15)
|
286 |
response.raise_for_status()
|
287 |
questions_data = response.json()
|
288 |
if not questions_data:
|
289 |
-
|
290 |
-
|
291 |
print(f"Fetched {len(questions_data)} questions.")
|
292 |
-
except requests.exceptions.RequestException as e:
|
293 |
-
print(f"Error fetching questions: {e}")
|
294 |
-
return f"Error fetching questions: {e}", None
|
295 |
-
except requests.exceptions.JSONDecodeError as e:
|
296 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
297 |
-
print(f"Response text: {response.text[:500]}")
|
298 |
-
return f"Error decoding server response for questions: {e}", None
|
299 |
except Exception as e:
|
300 |
print(f"An unexpected error occurred fetching questions: {e}")
|
301 |
return f"An unexpected error occurred fetching questions: {e}", None
|
302 |
|
303 |
-
# 3. Run your Agent
|
304 |
results_log = []
|
305 |
answers_payload = []
|
306 |
print(f"Running agent on {len(questions_data)} questions...")
|
@@ -315,19 +215,17 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
315 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
316 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
317 |
except Exception as e:
|
318 |
-
|
319 |
-
|
320 |
|
321 |
if not answers_payload:
|
322 |
print("Agent did not produce any answers to submit.")
|
323 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
324 |
|
325 |
-
# 4. Prepare Submission
|
326 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
327 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
328 |
print(status_update)
|
329 |
|
330 |
-
# 5. Submit
|
331 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
332 |
try:
|
333 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -343,34 +241,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
343 |
print("Submission successful.")
|
344 |
results_df = pd.DataFrame(results_log)
|
345 |
return final_status, results_df
|
346 |
-
except requests.exceptions.HTTPError as e:
|
347 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
348 |
-
try:
|
349 |
-
error_json = e.response.json()
|
350 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
351 |
-
except requests.exceptions.JSONDecodeError:
|
352 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
353 |
-
status_message = f"Submission Failed: {error_detail}"
|
354 |
-
print(status_message)
|
355 |
-
results_df = pd.DataFrame(results_log)
|
356 |
-
return status_message, results_df
|
357 |
-
except requests.exceptions.Timeout:
|
358 |
-
status_message = "Submission Failed: The request timed out."
|
359 |
-
print(status_message)
|
360 |
-
results_df = pd.DataFrame(results_log)
|
361 |
-
return status_message, results_df
|
362 |
-
except requests.exceptions.RequestException as e:
|
363 |
-
status_message = f"Submission Failed: Network error - {e}"
|
364 |
-
print(status_message)
|
365 |
-
results_df = pd.DataFrame(results_log)
|
366 |
-
return status_message, results_df
|
367 |
except Exception as e:
|
368 |
status_message = f"An unexpected error occurred during submission: {e}"
|
369 |
print(status_message)
|
|
|
370 |
results_df = pd.DataFrame(results_log)
|
371 |
return status_message, results_df
|
372 |
|
373 |
-
|
374 |
# --- Build Gradio Interface using Blocks ---
|
375 |
with gr.Blocks() as demo:
|
376 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
@@ -381,20 +258,12 @@ with gr.Blocks() as demo:
|
|
381 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
382 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
383 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
384 |
-
|
385 |
-
---
|
386 |
-
**Disclaimers:**
|
387 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
388 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
389 |
"""
|
390 |
)
|
391 |
|
392 |
gr.LoginButton()
|
393 |
-
|
394 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
395 |
-
|
396 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
397 |
-
# Removed max_rows=10 from DataFrame constructor
|
398 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
399 |
|
400 |
run_button.click(
|
@@ -404,9 +273,8 @@ with gr.Blocks() as demo:
|
|
404 |
|
405 |
if __name__ == "__main__":
|
406 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
407 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
408 |
space_host_startup = os.getenv("SPACE_HOST")
|
409 |
-
space_id_startup = os.getenv("SPACE_ID")
|
410 |
|
411 |
if space_host_startup:
|
412 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -414,7 +282,7 @@ if __name__ == "__main__":
|
|
414 |
else:
|
415 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
416 |
|
417 |
-
if space_id_startup:
|
418 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
419 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
420 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
|
|
1 |
+
# app.py (New LangChain version)
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
import datetime
|
7 |
import pytz
|
8 |
import math
|
9 |
import re
|
10 |
import requests
|
|
|
|
|
|
|
11 |
import traceback
|
|
|
12 |
import sys
|
13 |
+
|
14 |
+
# --- LangChain and new Transformers imports ---
|
15 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
16 |
+
from langchain_huggingface import HuggingFacePipeline
|
17 |
+
from langchain_core.prompts import PromptTemplate
|
18 |
+
from langchain.tools import Tool
|
19 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
20 |
+
|
21 |
+
# --- Other imports ---
|
22 |
+
import transformers # Still useful for version checking
|
23 |
+
print(f"--- Using transformers version: {transformers.__version__} ---")
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# --- Constants ---
|
26 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
27 |
|
28 |
+
|
29 |
+
# --- Tool Definitions (LangChain Style) ---
|
30 |
+
# For LangChain, we define the functions and then wrap them in LangChain's Tool class.
|
31 |
+
|
32 |
+
def get_current_time_in_timezone_func(timezone: str) -> str:
|
33 |
+
"""A tool that fetches the current local time in a specified IANA timezone. Always use this tool for questions about the current time. Input should be a valid timezone string (e.g., 'America/New_York', 'Europe/London')."""
|
34 |
print(f"--- Tool: Executing get_current_time_in_timezone for: {timezone} ---")
|
35 |
try:
|
36 |
tz = pytz.timezone(timezone)
|
|
|
37 |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S %Z%z")
|
38 |
return f"The current local time in {timezone} is: {local_time}"
|
39 |
except pytz.exceptions.UnknownTimeZoneError:
|
40 |
+
return f"Error: Unknown timezone '{timezone}'. Please use a valid IANA timezone name."
|
|
|
41 |
except Exception as e:
|
|
|
42 |
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
43 |
|
44 |
+
# Using the DuckDuckGoSearchRun tool from LangChain for stability
|
45 |
+
# The description is very important for the agent to know when to use it.
|
46 |
+
search_tool = DuckDuckGoSearchRun(
|
47 |
+
name="web_search",
|
48 |
+
description="A tool that performs a web search using DuckDuckGo. Use this to find up-to-date information about events, facts, or topics when the answer isn't already known."
|
49 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def safe_calculator_func(expression: str) -> str:
|
52 |
+
"""A tool for evaluating simple mathematical expressions. Use this tool *only* for calculations involving numbers, +, -, *, /, %, parentheses, and the math functions: sqrt, pow. Do not use it to run other code."""
|
|
|
53 |
print(f"--- Tool: Executing safe_calculator with expression: {expression} ---")
|
54 |
try:
|
55 |
+
# Using a more restricted eval context for safety
|
56 |
+
allowed_names = {"sqrt": math.sqrt, "pow": math.pow, "pi": math.pi}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
result = eval(expression, {"__builtins__": {}}, allowed_names)
|
|
|
|
|
|
|
|
|
|
|
58 |
return str(result)
|
59 |
except Exception as e:
|
|
|
60 |
print(f"Error during calculation for '{expression}': {e}")
|
61 |
return f"Error calculating '{expression}': Invalid expression or calculation error ({e})."
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# --- LangChain Agent Definition ---
|
65 |
+
class LangChainAgentWrapper:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def __init__(self):
|
67 |
+
print("Initializing LangChainAgentWrapper...")
|
68 |
+
|
69 |
+
# Using a newer, more capable instruction-tuned model.
|
70 |
+
# This model is generally better at following the ReAct prompt format used by LangChain agents.
|
71 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
72 |
+
# model_id = "bigcode/starcoderbase-1b" # You can still use starcoder if you prefer
|
73 |
+
|
74 |
try:
|
75 |
+
hf_auth_token = os.getenv("HF_TOKEN")
|
|
|
76 |
if not hf_auth_token:
|
77 |
+
raise ValueError("HF_TOKEN secret is missing. It is required for downloading models.")
|
|
|
|
|
78 |
else:
|
79 |
+
print("HF_TOKEN secret found.")
|
80 |
+
|
81 |
+
# Create the Hugging Face pipeline
|
82 |
+
print(f"Loading model pipeline for: {model_id}")
|
83 |
+
llm_pipeline = transformers.pipeline(
|
84 |
+
"text-generation",
|
85 |
+
model=model_id,
|
86 |
+
model_kwargs={"torch_dtype": "auto"}, # Use "auto" for dtype
|
87 |
+
device_map="auto", # Requires accelerate
|
88 |
+
token=hf_auth_token,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
+
print("Model pipeline loaded successfully.")
|
91 |
+
|
92 |
+
# Wrap the pipeline in a LangChain LLM object
|
93 |
+
self.llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
94 |
+
|
95 |
+
# Define the list of LangChain tools
|
96 |
+
self.tools = [
|
97 |
+
Tool(
|
98 |
+
name="get_current_time_in_timezone",
|
99 |
+
func=get_current_time_in_timezone_func,
|
100 |
+
description=get_current_time_in_timezone_func.__doc__
|
101 |
+
),
|
102 |
+
search_tool, # This is already a LangChain Tool instance
|
103 |
+
Tool(
|
104 |
+
name="safe_calculator",
|
105 |
+
func=safe_calculator_func,
|
106 |
+
description=safe_calculator_func.__doc__
|
107 |
+
),
|
108 |
+
]
|
109 |
+
print(f"Tools prepared for agent: {[tool.name for tool in self.tools]}")
|
110 |
+
|
111 |
+
# Create the ReAct agent prompt from a template
|
112 |
+
# The prompt is crucial for teaching the agent how to think and use tools.
|
113 |
+
react_prompt = PromptTemplate.from_template(
|
114 |
+
"""
|
115 |
+
You are a helpful assistant. Answer the following questions as best you can.
|
116 |
+
You have access to the following tools:
|
117 |
+
|
118 |
+
{tools}
|
119 |
+
|
120 |
+
Use the following format:
|
121 |
+
|
122 |
+
Question: the input question you must answer
|
123 |
+
Thought: you should always think about what to do
|
124 |
+
Action: the action to take, should be one of [{tool_names}]
|
125 |
+
Action Input: the input to the action
|
126 |
+
Observation: the result of the action
|
127 |
+
... (this Thought/Action/Action Input/Observation can repeat N times)
|
128 |
+
Thought: I now know the final answer
|
129 |
+
Final Answer: the final answer to the original input question
|
130 |
+
|
131 |
+
Begin!
|
132 |
+
|
133 |
+
Question: {input}
|
134 |
+
Thought:{agent_scratchpad}
|
135 |
+
"""
|
136 |
)
|
137 |
+
|
138 |
+
# Create the agent
|
139 |
+
agent = create_react_agent(self.llm, self.tools, react_prompt)
|
140 |
+
|
141 |
+
# Create the agent executor, which runs the agent loop
|
142 |
+
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
|
143 |
+
print("LangChain agent created successfully.")
|
144 |
|
145 |
except Exception as e:
|
146 |
+
print(f"CRITICAL ERROR: Failed to initialize LangChain agent: {e}")
|
|
|
147 |
traceback.print_exc()
|
148 |
+
raise RuntimeError(f"LangChain agent initialization failed: {e}") from e
|
149 |
|
|
|
150 |
def __call__(self, question: str) -> str:
|
151 |
+
print(f"\n--- LangChainAgentWrapper received question: {question[:100]}... ---")
|
152 |
try:
|
153 |
+
# Invoke the agent executor
|
154 |
+
response = self.agent_executor.invoke({"input": question})
|
155 |
+
# The answer is in the 'output' key of the response dictionary
|
156 |
+
return response.get("output", "No output found.")
|
157 |
except Exception as e:
|
158 |
+
print(f"ERROR: LangChain agent execution failed: {e}")
|
|
|
159 |
traceback.print_exc()
|
160 |
return f"Agent Error: Failed to process the question. Details: {e}"
|
161 |
|
162 |
+
# --- Main Evaluation Logic ---
|
163 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
164 |
"""
|
165 |
+
Fetches all questions, runs the agent on them, submits all answers,
|
166 |
and displays the results.
|
167 |
"""
|
168 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
169 |
|
170 |
if profile:
|
171 |
username= f"{profile.username}"
|
|
|
178 |
questions_url = f"{api_url}/questions"
|
179 |
submit_url = f"{api_url}/submit"
|
180 |
|
|
|
181 |
try:
|
182 |
+
# Now instantiate our new LangChain agent
|
183 |
+
agent = LangChainAgentWrapper()
|
184 |
except Exception as e:
|
185 |
print(f"Error instantiating agent: {e}")
|
186 |
return f"Error initializing agent: {e}", None
|
187 |
+
|
188 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
189 |
print(agent_code)
|
190 |
|
|
|
191 |
print(f"Fetching questions from: {questions_url}")
|
192 |
try:
|
193 |
response = requests.get(questions_url, timeout=15)
|
194 |
response.raise_for_status()
|
195 |
questions_data = response.json()
|
196 |
if not questions_data:
|
197 |
+
print("Fetched questions list is empty.")
|
198 |
+
return "Fetched questions list is empty or invalid format.", None
|
199 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
except Exception as e:
|
201 |
print(f"An unexpected error occurred fetching questions: {e}")
|
202 |
return f"An unexpected error occurred fetching questions: {e}", None
|
203 |
|
|
|
204 |
results_log = []
|
205 |
answers_payload = []
|
206 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
215 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
216 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
217 |
except Exception as e:
|
218 |
+
print(f"Error running agent on task {task_id}: {e}")
|
219 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
220 |
|
221 |
if not answers_payload:
|
222 |
print("Agent did not produce any answers to submit.")
|
223 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
224 |
|
|
|
225 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
226 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
227 |
print(status_update)
|
228 |
|
|
|
229 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
230 |
try:
|
231 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
241 |
print("Submission successful.")
|
242 |
results_df = pd.DataFrame(results_log)
|
243 |
return final_status, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
except Exception as e:
|
245 |
status_message = f"An unexpected error occurred during submission: {e}"
|
246 |
print(status_message)
|
247 |
+
traceback.print_exc()
|
248 |
results_df = pd.DataFrame(results_log)
|
249 |
return status_message, results_df
|
250 |
|
|
|
251 |
# --- Build Gradio Interface using Blocks ---
|
252 |
with gr.Blocks() as demo:
|
253 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
258 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
259 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
260 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
|
|
|
|
|
|
261 |
"""
|
262 |
)
|
263 |
|
264 |
gr.LoginButton()
|
|
|
265 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
266 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
267 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
268 |
|
269 |
run_button.click(
|
|
|
273 |
|
274 |
if __name__ == "__main__":
|
275 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
276 |
space_host_startup = os.getenv("SPACE_HOST")
|
277 |
+
space_id_startup = os.getenv("SPACE_ID")
|
278 |
|
279 |
if space_host_startup:
|
280 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
282 |
else:
|
283 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
284 |
|
285 |
+
if space_id_startup:
|
286 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
287 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
288 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|