Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -66,52 +66,22 @@ class LangChainAgentWrapper:
|
|
| 66 |
def __init__(self):
|
| 67 |
print("Initializing LangChainAgentWrapper...")
|
| 68 |
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
try:
|
| 72 |
-
hf_auth_token = os.getenv("HF_TOKEN")
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# --- CORRECTED MODEL LOADING ---
|
| 79 |
-
|
| 80 |
-
# 1. Create the 4-bit quantization configuration
|
| 81 |
-
print("Creating 4-bit quantization config...")
|
| 82 |
-
quantization_config = transformers.BitsAndBytesConfig(
|
| 83 |
-
load_in_4bit=True,
|
| 84 |
-
bnb_4bit_quant_type="nf4",
|
| 85 |
-
bnb_4bit_compute_dtype="bfloat16"
|
| 86 |
-
)
|
| 87 |
-
print("Quantization config created.")
|
| 88 |
-
|
| 89 |
-
# 2. Load the tokenizer
|
| 90 |
-
print(f"Loading tokenizer for: {model_id}")
|
| 91 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, token=hf_auth_token)
|
| 92 |
-
print("Tokenizer loaded successfully.")
|
| 93 |
-
|
| 94 |
-
# 3. Load the model with the quantization config
|
| 95 |
-
print(f"Loading model '{model_id}' with quantization...")
|
| 96 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 97 |
-
model_id,
|
| 98 |
-
quantization_config=quantization_config,
|
| 99 |
-
device_map="auto", # Automatically maps model to available hardware (CPU/GPU)
|
| 100 |
-
token=hf_auth_token
|
| 101 |
-
)
|
| 102 |
-
print("Model loaded successfully.")
|
| 103 |
-
|
| 104 |
-
# 4. Create the Hugging Face pipeline with the pre-loaded model and tokenizer
|
| 105 |
-
print("Creating text-generation pipeline...")
|
| 106 |
llm_pipeline = transformers.pipeline(
|
| 107 |
-
"
|
| 108 |
-
model=
|
| 109 |
-
|
| 110 |
-
# No need to pass quantization_config here anymore
|
| 111 |
)
|
| 112 |
-
print("Model pipeline
|
| 113 |
-
|
| 114 |
-
# --- END CORRECTION ---
|
| 115 |
|
| 116 |
# Wrap the pipeline in a LangChain LLM object
|
| 117 |
self.llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
|
|
|
| 66 |
def __init__(self):
|
| 67 |
print("Initializing LangChainAgentWrapper...")
|
| 68 |
|
| 69 |
+
# --- CHANGE 1: Switched to a smaller, CPU-friendly model ---
|
| 70 |
+
model_id = "google/flan-t5-base"
|
| 71 |
|
| 72 |
try:
|
| 73 |
+
hf_auth_token = os.getenv("HF_TOKEN") # Good practice to keep, but not needed for FLAN-T5
|
| 74 |
+
|
| 75 |
+
# --- CHANGE 2 & 3: Use the correct task for T5 and remove quantization ---
|
| 76 |
+
# We no longer need to load the tokenizer and model separately,
|
| 77 |
+
# as we are not applying a custom quantization config.
|
| 78 |
+
print(f"Loading model pipeline for: {model_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
llm_pipeline = transformers.pipeline(
|
| 80 |
+
"text2text-generation", # <<< IMPORTANT: Changed task for T5 models
|
| 81 |
+
model=model_id,
|
| 82 |
+
device_map="auto"
|
|
|
|
| 83 |
)
|
| 84 |
+
print("Model pipeline loaded successfully.")
|
|
|
|
|
|
|
| 85 |
|
| 86 |
# Wrap the pipeline in a LangChain LLM object
|
| 87 |
self.llm = HuggingFacePipeline(pipeline=llm_pipeline)
|