Spaces:
Sleeping
Sleeping
File size: 176,091 Bytes
73f0467 2949314 e904380 2949314 81b1be3 2949314 e904380 1acc57d 2949314 33e434f 2949314 23c7b7f 2949314 0d55cad 2949314 3f6a891 2949314 3f6a891 2949314 0d55cad 2949314 0d55cad 2949314 23c7b7f 2949314 23c7b7f e904380 23c7b7f e904380 23c7b7f e904380 de997e1 e904380 23c7b7f de997e1 e904380 23c7b7f e904380 de997e1 e904380 23c7b7f e904380 23c7b7f 2949314 33e434f 2949314 e904380 2949314 e904380 23c7b7f e904380 23c7b7f e904380 23c7b7f e904380 23c7b7f e904380 2949314 33e434f 2949314 e904380 2949314 23c7b7f 2949314 23c7b7f 2949314 de997e1 23c7b7f de997e1 23c7b7f de997e1 2949314 e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 e904380 2949314 23c7b7f e904380 2949314 e904380 2949314 e904380 2949314 e904380 23c7b7f e904380 23c7b7f e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 e904380 2949314 0541736 2949314 0541736 3233dba 0541736 e6a6ad9 0541736 9ed48e5 2949314 3233dba 2949314 3233dba 2949314 3233dba 2949314 3233dba eb4f707 3233dba eb4f707 3233dba eb4f707 3233dba eb4f707 3233dba eb4f707 3233dba eb4f707 3233dba eb4f707 3233dba eb4f707 3233dba 2949314 049e709 e904380 049e709 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 2949314 23c7b7f 5920a0a 7915a03 5920a0a 7915a03 5920a0a 2949314 23c7b7f 2949314 23c7b7f 2949314 d2c7424 2949314 23c7b7f 2949314 23c7b7f 2949314 5920a0a 9d8c8d1 bab45bb 5920a0a 15c20db e904380 6913997 e904380 23c7b7f 6913997 23c7b7f 6913997 e904380 0dcb61d e904380 23c7b7f e904380 23c7b7f e904380 15c20db 23c7b7f 15c20db 0dcb61d 15c20db 0dcb61d d2c7424 5920a0a 04e4db2 5920a0a cdf3cd3 5920a0a d2c7424 0dcb61d d2c7424 0dcb61d d2c7424 0dcb61d d2c7424 0dcb61d d2c7424 2534af5 2876ab6 0dcb61d 2876ab6 d2c7424 1854f7f 0dcb61d 1854f7f 04e4db2 1854f7f 0dcb61d 5920a0a 0dcb61d e904380 e6a6ad9 e904380 e6a6ad9 e904380 23c7b7f e6a6ad9 4e662d0 23c7b7f eb4f707 e904380 1854f7f e904380 23c7b7f 0c26c18 1854f7f 04e4db2 1854f7f 04e4db2 1854f7f 04e4db2 1854f7f cdf3cd3 1854f7f 04e4db2 cdf3cd3 e904380 23c7b7f e904380 eb4f707 cdf3cd3 23c7b7f cdf3cd3 e904380 eb4f707 e904380 eb4f707 e904380 4e662d0 eb4f707 e904380 4e662d0 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 caffcd1 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 caffcd1 e904380 eb4f707 e904380 eb4f707 e904380 2949314 5920a0a 2949314 5920a0a 2949314 eb4f707 b52f65e eb4f707 b52f65e eb4f707 b52f65e 18558c0 b52f65e eb4f707 b52f65e eb4f707 e904380 eb4f707 b52f65e eb4f707 b52f65e eb4f707 b52f65e eb4f707 e904380 eb4f707 b52f65e eb4f707 b52f65e eb4f707 b52f65e eb4f707 e904380 eb4f707 b52f65e e904380 eb4f707 b52f65e eb4f707 b52f65e eb4f707 b52f65e eb4f707 b52f65e e904380 b52f65e eb4f707 2949314 23c7b7f 00228a9 de997e1 cdf3cd3 23c7b7f cdf3cd3 00228a9 b52f65e eb4f707 b52f65e eb4f707 b52f65e eb4f707 b52f65e eb4f707 e6a6ad9 e904380 eb4f707 776c200 eb4f707 776c200 eb4f707 776c200 eb4f707 e904380 3233dba e904380 eb4f707 e904380 eb4f707 e904380 e6a6ad9 e904380 e6a6ad9 e904380 e6a6ad9 e904380 e6a6ad9 e904380 e6a6ad9 e904380 e6a6ad9 e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 e6a6ad9 e904380 b52f65e e904380 b52f65e e904380 23c7b7f e904380 e6a6ad9 e904380 23c7b7f eb4f707 e904380 eb4f707 e904380 23c7b7f e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 23c7b7f e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 d671c65 e904380 eb4f707 d671c65 e904380 d671c65 e904380 2876ab6 e904380 d671c65 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 d671c65 e904380 15c20db d671c65 15c20db e904380 d671c65 e904380 d671c65 e904380 2534af5 60d2e7b 2534af5 e904380 2534af5 e904380 23c7b7f e904380 23c7b7f e904380 d671c65 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 eb4f707 e904380 e6a6ad9 e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 de997e1 e904380 de997e1 e904380 de997e1 e904380 de997e1 e904380 ae9f70f e904380 34d3fc3 e6a6ad9 23c7b7f ae9f70f 23c7b7f ae9f70f 23c7b7f e6a6ad9 e904380 b52f65e e904380 ae9f70f e904380 ae9f70f e904380 34d3fc3 e904380 e6a6ad9 23c7b7f e904380 e6a6ad9 e904380 b52f65e e904380 b52f65e e904380 23c7b7f e904380 23c7b7f e904380 23c7b7f e904380 23c7b7f e904380 e6a6ad9 e904380 eb4f707 e904380 eb4f707 e904380 b52f65e e904380 b52f65e e904380 b52f65e e904380 eb4f707 e904380 b52f65e e904380 e6a6ad9 e904380 b52f65e e6a6ad9 b52f65e e6a6ad9 b52f65e e6a6ad9 b52f65e e6a6ad9 b52f65e e6a6ad9 c097eb8 e904380 eb4f707 e904380 eb4f707 e904380 23c7b7f e904380 eb4f707 e904380 4e662d0 e904380 4e662d0 e904380 4e662d0 e904380 4e662d0 eb4f707 1854f7f eb4f707 4e662d0 e904380 eb4f707 4e662d0 00228a9 cdf3cd3 00228a9 2949314 7278894 025f913 23c7b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 |
#!/usr/bin/env python3
"""
Apex Biotical Veterinary WhatsApp Assistant - Premium Edition
The most effective and accurate veterinary Assistant in the market
"""
import os
import pandas as pd
import requests
import json
from fastapi import FastAPI, Request, Response, Form, HTTPException, File, UploadFile
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse
import time
import re
from typing import List, Dict, Any, Optional, Tuple
import openai
from dotenv import load_dotenv
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import uvicorn
from datetime import datetime, timedelta
from rapidfuzz import process, fuzz
from deep_translator import GoogleTranslator
import numpy as np
import logging
import base64
import tempfile
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter, A4
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_JUSTIFY
import io
import pathlib
from collections import defaultdict, Counter
import hashlib
import aiofiles
import asyncio
from difflib import SequenceMatcher
import httpx
import langdetect
from langdetect import detect
import threading
import shutil
# Configure advanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('veterinary_bot.log', encoding='utf-8'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize FastAPI app
app = FastAPI(title="Apex Biotical Veterinary Assistant", version="2.0.0")
# Ensure static and uploads directories exist before mounting
os.makedirs('static', exist_ok=True)
os.makedirs('uploads', exist_ok=True)
# Mount static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/uploads", StaticFiles(directory="uploads"), name="uploads")
templates = Jinja2Templates(directory="templates")
# Global variables with enhanced data structures
CSV_FILE = "Veterinary.csv"
products_df = None
user_contexts = {}
last_products = {}
conversation_history = defaultdict(list)
product_analytics = defaultdict(int)
session_data = {}
# Environment variables
WHATSJET_API_URL = os.getenv("WHATSJET_API_URL")
WHATSJET_VENDOR_UID = os.getenv("WHATSJET_VENDOR_UID")
WHATSJET_API_TOKEN = os.getenv("WHATSJET_API_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SERVER_URL = os.getenv("SERVER_URL", "https://your-huggingface-space-url.hf.space")
# Initialize OpenAI client
if OPENAI_API_KEY:
openai.api_key = OPENAI_API_KEY
logger.info("✅ OpenAI client initialized successfully")
else:
logger.warning("⚠️ OpenAI API key not found - voice transcription will be disabled")
# Veterinary domain-specific constants
VETERINARY_CATEGORIES = {
'antibiotic': ['Antibiotic / Quinolone', 'Antibiotic / Respiratory Infections', 'Veterinary Injectable Solution (Antibiotic)'],
'respiratory': ['Respiratory Support', 'Respiratory / Mucolytic', 'Respiratory Support and Hygiene Enhancer'],
'liver': ['Liver & Kidney Support', 'Liver Tonic and Hepatoprotective Supplement'],
'vitamin': ['Multivitamin Supplement', 'Multivitamin Supplement for veterinary use', 'Vitamin and Amino Acid Supplement (Injectable Solution)'],
'supplement': ['Nutritional Supplement / Mycotoxins', 'Immunity Enhancer and Antioxidant Supplement'],
'mycotoxin': ['Mycotoxin Binder'],
'heat_stress': ['Heat Stress Support'],
'anticoccidial': ['Anticoccidial / Sulfonamide'],
'phytogenic': ['Phytogenic / Antibiotic Alternative']
}
VETERINARY_SYMPTOMS = {
'respiratory': ['cough', 'breathing', 'respiratory', 'bronchitis', 'pneumonia', 'crd', 'coryza', 'flu'],
'liver': ['liver', 'hepatitis', 'jaundice', 'ascites', 'fatty liver'],
'diarrhea': ['diarrhea', 'diarrhoea', 'loose stool', 'gastroenteritis'],
'stress': ['stress', 'heat stress', 'transport', 'vaccination'],
'infection': ['infection', 'bacterial', 'viral', 'fungal', 'septicemia'],
'deficiency': ['vitamin deficiency', 'mineral deficiency', 'anemia'],
'mycotoxin': ['mycotoxin', 'mold', 'fungal toxin', 'aflatoxin']
}
VETERINARY_SPECIES = {
'poultry': ['chicken', 'broiler', 'layer', 'turkey', 'duck', 'quail', 'poultry'],
'livestock': ['cattle', 'cow', 'buffalo', 'sheep', 'goat', 'livestock'],
'pet': ['dog', 'cat', 'pet', 'companion animal']
}
# Menu Configuration - Define each menu with its valid options
MENU_CONFIG = {
'main_menu': {
'name': 'Main Menu',
'valid_options': ['1', '2', '3', '4'],
'option_descriptions': {
'1': 'Search Products',
'2': 'Browse Categories',
'3': 'Download Catalog',
'4': 'Chat with Veterinary AI Assistant'
}
},
'category_selection_menu': {
'name': 'Category Selection Menu',
'valid_options': [], # Will be populated dynamically based on available categories
'option_descriptions': {}
},
'category_products_menu': {
'name': 'Category Products Menu',
'valid_options': [], # Will be populated dynamically based on available products
'option_descriptions': {}
},
'all_products_menu': {
'name': 'All Products Menu',
'valid_options': [], # Will be populated dynamically based on all products
'option_descriptions': {}
},
'intelligent_products_menu': {
'name': 'Intelligent Products Menu',
'valid_options': [], # Will be populated dynamically based on available products
'option_descriptions': {}
},
'product_inquiry': {
'name': 'Product Inquiry Menu',
'valid_options': ['1', '2', '3'],
'option_descriptions': {
'1': 'Talk to Veterinary Consultant',
'2': 'Inquire about Product Availability',
'3': 'Back to Main Menu'
}
},
'ai_chat': {
'name': 'AI Chat Mode',
'valid_options': ['main'],
'option_descriptions': {
'main': 'Return to Main Menu'
}
}
}
def validate_menu_selection(selection: str, current_state: str, user_context: dict) -> tuple[bool, str]:
"""
Validate if a selection is valid for the current menu
Returns (is_valid, error_message)
"""
if current_state not in MENU_CONFIG:
return False, f"❌ Unknown menu state: {current_state}"
menu_config = MENU_CONFIG[current_state]
valid_options = menu_config['valid_options']
# For dynamic menus, get valid options from context
if current_state == 'category_selection_menu':
available_categories = user_context.get('available_categories', [])
valid_options = [str(i) for i in range(1, len(available_categories) + 1)]
elif current_state == 'category_products_menu':
available_products = user_context.get('available_products', [])
valid_options = [str(i) for i in range(1, len(available_products) + 1)]
elif current_state == 'all_products_menu':
if products_df is not None and not products_df.empty:
valid_options = [str(i) for i in range(1, len(products_df) + 1)]
elif current_state == 'intelligent_products_menu':
available_products = user_context.get('available_products', [])
valid_options = [str(i) for i in range(1, len(available_products) + 1)]
# Check if selection is valid
if selection in valid_options:
return True, ""
# Generate error message with valid options
if valid_options:
error_msg = f"❌ Invalid selection for {menu_config['name']}. Valid options: {', '.join(valid_options)}"
else:
error_msg = f"❌ Invalid selection for {menu_config['name']}. No options available."
return False, error_msg
def get_menu_info(current_state: str, user_context: dict) -> dict:
"""
Get information about the current menu including valid options
"""
if current_state not in MENU_CONFIG:
return {"name": "Unknown Menu", "valid_options": [], "option_descriptions": {}}
menu_config = MENU_CONFIG[current_state].copy()
# For dynamic menus, populate valid options from context
if current_state == 'category_selection_menu':
available_categories = user_context.get('available_categories', [])
menu_config['valid_options'] = [str(i) for i in range(1, len(available_categories) + 1)]
menu_config['option_descriptions'] = {
str(i): category for i, category in enumerate(available_categories, 1)
}
elif current_state == 'category_products_menu':
available_products = user_context.get('available_products', [])
menu_config['valid_options'] = [str(i) for i in range(1, len(available_products) + 1)]
menu_config['option_descriptions'] = {
str(i): product.get('Product Name', f'Product {i}')
for i, product in enumerate(available_products, 1)
}
elif current_state == 'all_products_menu':
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
menu_config['valid_options'] = [str(i) for i in range(1, len(all_products) + 1)]
menu_config['option_descriptions'] = {
str(i): product.get('Product Name', f'Product {i}')
for i, product in enumerate(all_products, 1)
}
elif current_state == 'intelligent_products_menu':
available_products = user_context.get('available_products', [])
menu_config['valid_options'] = [str(i) for i in range(1, len(available_products) + 1)]
menu_config['option_descriptions'] = {
str(i): product.get('Product Name', f'Product {i}')
for i, product in enumerate(available_products, 1)
}
return menu_config
# Voice processing functions
async def download_voice_file(media_url: str, filename: str) -> str:
"""Download voice file from WhatsApp"""
try:
# Create temp_voice directory if it doesn't exist
os.makedirs('temp_voice', exist_ok=True)
# Download the file
async with httpx.AsyncClient() as client:
response = await client.get(media_url)
response.raise_for_status()
file_path = os.path.join('temp_voice', filename)
with open(file_path, 'wb') as f:
f.write(response.content)
logger.info(f"Voice file downloaded: {file_path}")
return file_path
except Exception as e:
logger.error(f"Error downloading voice file: {e}")
return None
async def transcribe_voice_with_openai(file_path: str) -> str:
"""Transcribe voice file using OpenAI Whisper with comprehensive veterinary domain system prompt"""
try:
# Check if file exists and has content
if not os.path.exists(file_path):
logger.error(f"[Transcribe] File not found: {file_path}")
return None
file_size = os.path.getsize(file_path)
if file_size == 0:
logger.error(f"[Transcribe] Empty file: {file_path}")
return None
logger.info(f"[Transcribe] Transcribing file: {file_path} (size: {file_size} bytes)")
# Comprehensive system prompt for veterinary WhatsApp assistant
system_prompt = """
You are transcribing voice messages for Apex Biotical Veterinary WhatsApp Assistant. This is a professional veterinary products chatbot.
CRITICAL: TRANSCRIBE ONLY ENGLISH OR URDU SPEECH - NOTHING ELSE
IMPORTANT RULES:
1. ONLY transcribe English or Urdu speech
2. If you hear unclear audio, transcribe as English
3. If you hear mixed languages, transcribe as English
4. Never transcribe gibberish or random characters
5. If audio is unclear, transcribe as "unclear audio"
6. Keep transcriptions simple and clean
PRODUCT NAMES (exact spelling required):
- Hydropex, Respira Aid Plus, Heposel, Bromacid, Hexatox
- APMA Fort, Para C.E, Tribiotic, PHYTO-SAL, Mycopex Super
- Eflin KT-20, Salcozine ST-30, Oftilex UA-10, Biscomin 10
- Apvita Plus, B-G Aspro-C, EC-Immune, Liverpex, Symodex
- Respira Aid, Adek Gold, Immuno DX
MENU COMMANDS:
- Numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Navigation: main, menu, back, home, start
- Options: option, number, choice, select
GREETINGS:
- English: hi, hello, hey, good morning, good afternoon, good evening
- Urdu: salam, assalamu alaikum, adaab, namaste, khuda hafiz
TRANSCRIPTION RULES:
1. Transcribe exactly what you hear in English or Urdu
2. Convert numbers to digits (one->1, two->2, etc.)
3. Preserve product names exactly
4. If unclear, transcribe as "unclear audio"
5. Keep it simple and clean
6. No random characters or mixed languages
EXAMPLES:
- "hydropex" -> "hydropex"
- "respira aid plus" -> "respira aid plus"
- "option one" -> "1"
- "main menu" -> "main"
- "salam" -> "salam"
- "search products" -> "search products"
- Unclear audio -> "unclear audio"
"""
# First attempt with comprehensive system prompt
with open(file_path, 'rb') as audio_file:
transcript = openai.Audio.transcribe(
model="whisper-1",
file=audio_file,
language="en", # Start with English
prompt=system_prompt
)
transcribed_text = transcript.text.strip()
logger.info(f"[Transcribe] Voice transcribed (English): '{transcribed_text}'")
# If first attempt failed or seems unclear, try with Urdu-specific prompt
if not transcribed_text or len(transcribed_text.strip()) < 2:
logger.warning(f"[Transcribe] First attempt failed, trying with Urdu-specific prompt")
urdu_system_prompt = """
You are transcribing Urdu voice messages for Apex Biotical Veterinary WhatsApp Assistant.
PRODUCT NAMES (Urdu/English):
- ہائیڈروپیکس (Hydropex)
- ریسپیرا ایڈ پلس (Respira Aid Plus)
- ہیپوسیل (Heposel)
- بروماسڈ (Bromacid)
- ہیکساٹوکس (Hexatox)
- اے پی ایم اے فورٹ (APMA Fort)
- پیرا سی ای (Para C.E)
- ٹرائی بیوٹک (Tribiotic)
- فائٹو سال (PHYTO-SAL)
- مائیکوپیکس سپر (Mycopex Super)
URDU NUMBERS:
- ایک (1), دو (2), تین (3), چار (4), پانچ (5)
- چھ (6), سات (7), آٹھ (8), نو (9), دس (10)
- گیارہ (11), بارہ (12), تیرہ (13), چودہ (14), پندرہ (15)
- سولہ (16), سترہ (17), اٹھارہ (18), انیس (19), بیس (20)
- اکیس (21), بائیس (22), تئیس (23)
URDU GREETINGS:
- سلام (salam), السلام علیکم (assalamu alaikum)
- آداب (adaab), نمستے (namaste), خدا حافظ (khuda hafiz)
URDU MENU COMMANDS:
- مین مینو (main menu), آپشن (option), نمبر (number)
- تلاش (search), براؤز (browse), ڈاؤن لوڈ (download)
- کیٹلاگ (catalog), رابطہ (contact), دستیابی (availability)
TRANSCRIPTION RULES:
1. Transcribe Urdu words in Urdu script
2. Convert Urdu numbers to digits
3. Handle mixed Urdu-English speech
4. Preserve product names exactly
5. Convert menu selections to numbers
"""
with open(file_path, 'rb') as audio_file:
transcript = openai.Audio.transcribe(
model="whisper-1",
file=audio_file,
language="ur", # Force Urdu
prompt=urdu_system_prompt
)
transcribed_text = transcript.text.strip()
logger.info(f"[Transcribe] Second attempt transcribed (Urdu): '{transcribed_text}'")
# Third attempt with mixed language prompt if still failing
if not transcribed_text or len(transcribed_text.strip()) < 2:
logger.warning(f"[Transcribe] Second attempt failed, trying with mixed language prompt")
mixed_system_prompt = """
You are transcribing voice messages for a veterinary products WhatsApp assistant. The user may speak in English, Urdu, or a mix of both languages.
PRODUCT NAMES (exact spelling required):
Hydropex, Respira Aid Plus, Heposel, Bromacid, Hexatox, APMA Fort, Para C.E, Tribiotic, PHYTO-SAL, Mycopex Super, Eflin KT-20, Salcozine ST-30, Oftilex UA-10, Biscomin 10, Apvita Plus, B-G Aspro-C, EC-Immune, Liverpex, Symodex, Respira Aid, Adek Gold, Immuno DX
NUMBERS (convert to digits):
English: one->1, two->2, three->3, etc.
Urdu: aik->1, ek->1, do->2, teen->3, etc.
MENU COMMANDS:
main, menu, back, home, start, option, number, search, browse, download, catalog, contact, availability
GREETINGS:
hi, hello, salam, assalamu alaikum, adaab, namaste
TRANSCRIPTION RULES:
1. Transcribe exactly what you hear
2. Convert numbers to digits
3. Preserve product names exactly
4. Handle both languages
5. Convert menu selections to numbers
"""
with open(file_path, 'rb') as audio_file:
transcript = openai.Audio.transcribe(
model="whisper-1",
file=audio_file,
prompt=mixed_system_prompt
)
transcribed_text = transcript.text.strip()
logger.info(f"[Transcribe] Third attempt (mixed) transcribed: '{transcribed_text}'")
# Final check for empty transcription or unclear audio
if not transcribed_text or len(transcribed_text.strip()) < 2:
logger.warning(f"[Transcribe] Very short or empty transcription: '{transcribed_text}'")
return "unclear audio"
# Check for gibberish or mixed characters
if len(transcribed_text) > 10 and not re.search(r'[a-zA-Z\u0600-\u06FF]', transcribed_text):
logger.warning(f"[Transcribe] Gibberish detected: '{transcribed_text}'")
return "unclear audio"
# Check for too many special characters
special_char_ratio = len(re.findall(r'[^\w\s]', transcribed_text)) / len(transcribed_text)
if special_char_ratio > 0.3:
logger.warning(f"[Transcribe] Too many special characters: '{transcribed_text}'")
return "unclear audio"
return transcribed_text
except Exception as e:
logger.error(f"[Transcribe] Error transcribing voice: {e}")
logger.error(f"[Transcribe] File path: {file_path}")
return None
def process_voice_input(text: str) -> str:
"""Process and clean voice input text with veterinary domain-specific transcription error correction"""
if not text:
return ""
# Clean the text
processed_text = text.strip()
# Remove extra whitespace
processed_text = re.sub(r'\s+', ' ', processed_text)
# Basic punctuation cleanup
processed_text = processed_text.replace(' ,', ',').replace(' .', '.')
# Veterinary domain-specific transcription error corrections
transcription_fixes = {
# Common menu selection errors
'opium': 'option',
'opium numara': 'option number',
'opium number': 'option number',
'opium number one': 'option number one',
'opium number two': 'option number two',
'opium number three': 'option number three',
'opium one': 'option one',
'opium two': 'option two',
'opium three': 'option three',
'numara': 'number',
'numbara': 'number',
'numbra': 'number',
'numbra one': 'number one',
'numbra two': 'number two',
'numbra three': 'number three',
'numbra 1': 'number 1',
'numbra 2': 'number 2',
'numbra 3': 'number 3',
# Number fixes - only when they appear as standalone numbers
'aik': '1',
'ek': '1',
'do': '2',
'teen': '3',
'char': '4',
'panch': '5',
'che': '3',
'tree': '3',
'free': '3',
'for': '4',
'fiv': '5',
'sik': '6',
'sat': '7',
'ath': '8',
'nau': '9',
'das': '10',
# Navigation command fixes
'man': 'main',
'men': 'main',
'mean': 'main',
'mein': 'main',
'maine': 'main',
'menu': 'main',
'home': 'main',
'back': 'main',
'return': 'main',
# Veterinary product name corrections
'hydro pex': 'hydropex',
'hydro pex': 'hydropex',
'respira aid': 'respira aid plus',
'respira aid plus': 'respira aid plus',
'hepo sel': 'heposel',
'brom acid': 'bromacid',
'hexa tox': 'hexatox',
'apma fort': 'apma fort',
'para c': 'para c.e',
'para ce': 'para c.e',
'tribiotic': 'tribiotic',
'phyto sal': 'phyto-sal',
'mycopex': 'mycopex super',
'mycopex super': 'mycopex super',
'eflin': 'eflin kt-20',
'salcozine': 'salcozine st-30',
'oftilex': 'oftilex ua-10',
'biscomin': 'biscomin 10',
'apvita': 'apvita plus',
'bg aspro': 'b-g aspro-c',
'ec immune': 'ec-immune',
'liverpex': 'liverpex',
'symodex': 'symodex',
'adek': 'adek gold',
'immuno': 'immuno dx'
}
# Apply transcription fixes - but be careful with Islamic greetings
original_text = processed_text.lower()
# Special handling for Islamic greetings - don't change "aik" in "assalamu alaikum"
if 'assalamu alaikum' in original_text or 'assalam' in original_text:
# Don't apply number fixes to Islamic greetings
for wrong, correct in transcription_fixes.items():
if wrong in original_text and wrong not in ['aik', 'ek']: # Skip number fixes for greetings
processed_text = processed_text.lower().replace(wrong, correct)
logger.info(f"Fixed transcription error: '{wrong}' -> '{correct}' in '{text}'")
else:
# Apply all fixes for non-greeting text
for wrong, correct in transcription_fixes.items():
if wrong in original_text:
processed_text = processed_text.lower().replace(wrong, correct)
logger.info(f"Fixed transcription error: '{wrong}' -> '{correct}' in '{text}'")
logger.info(f"Voice input processed: '{text}' -> '{processed_text}'")
return processed_text
# Note: Voice messages are now processed exactly like text messages
# The transcribed voice text is passed directly to process_incoming_message
# This ensures consistent behavior between voice and text inputs
# Enhanced product search with veterinary domain expertise
def get_veterinary_product_matches(query: str) -> List[Dict[str, Any]]:
"""
Advanced veterinary product matching with domain-specific intelligence
"""
if not query:
return []
if products_df is None:
load_products_data()
normalized_query = normalize(query).lower().strip()
logger.info(f"[Veterinary Search] Searching for: '{normalized_query}'")
# Skip very short queries that are likely menu selections
if len(normalized_query) <= 2 and normalized_query.isdigit():
logger.info(f"[Veterinary Search] Skipping menu selection: '{normalized_query}'")
return []
scored_matches = []
# Veterinary-specific query expansion
expanded_queries = [normalized_query]
# Expand by symptoms
for symptom_category, symptoms in VETERINARY_SYMPTOMS.items():
if any(symptom in normalized_query for symptom in symptoms):
expanded_queries.extend(symptoms)
# Expand by species
for species_category, species in VETERINARY_SPECIES.items():
if any(sp in normalized_query for sp in species):
expanded_queries.extend(species)
# Expand by category
for category_key, categories in VETERINARY_CATEGORIES.items():
if category_key in normalized_query:
expanded_queries.extend(categories)
# Common veterinary product variations
veterinary_variations = {
'hydropex': ['hydropex', 'hydro pex', 'electrolyte', 'dehydration', 'heat stress'],
'heposel': ['heposel', 'hepo sel', 'liver tonic', 'hepatoprotective'],
'bromacid': ['bromacid', 'brom acid', 'respiratory', 'mucolytic'],
'respira aid': ['respira aid', 'respira aid plus', 'respiratory support'],
'hexatox': ['hexatox', 'hexa tox', 'liver support', 'kidney support'],
'apma fort': ['apma fort', 'mycotoxin', 'liver support'],
'para c': ['para c', 'para c.e', 'heat stress', 'paracetamol'],
'tribiotic': ['tribiotic', 'antibiotic', 'respiratory infection'],
'phyto-sal': ['phyto-sal', 'phytogenic', 'vitamin supplement'],
'mycopex': ['mycopex', 'mycotoxin binder', 'mold'],
'oftilex': ['oftilex', 'ofloxacin', 'antibiotic'],
'biscomin': ['biscomin', 'oxytetracycline', 'injectable'],
'apvita': ['apvita', 'vitamin b', 'amino acid'],
'bg aspro': ['bg aspro', 'aspirin', 'vitamin c'],
'ec-immune': ['ec-immune', 'immune', 'immunity'],
'liverpex': ['liverpex', 'liver', 'metabolic'],
'symodex': ['symodex', 'multivitamin', 'vitamin'],
'adek gold': ['adek gold', 'vitamin', 'multivitamin'],
'immuno dx': ['immuno dx', 'immune', 'antioxidant']
}
# Add veterinary variations
for key, variations in veterinary_variations.items():
if key in normalized_query:
expanded_queries.extend(variations)
for _, row in products_df.iterrows():
best_score = 0
best_match_type = ""
match_details = {}
# Search across all relevant fields with veterinary weighting
search_fields = [
('Product Name', row.get('Product Name', ''), 1.0),
('Category', row.get('Category', ''), 0.8),
('Indications', row.get('Indications', ''), 0.9),
('Target Species', row.get('Target Species', ''), 0.7),
('Type', row.get('Type', ''), 0.6),
('Composition', row.get('Composition', ''), 0.5)
]
for field_name, field_value, weight in search_fields:
if pd.isna(field_value) or not field_value:
continue
field_str = str(field_value).lower()
# Exact matches (highest priority)
for expanded_query in expanded_queries:
if expanded_query in field_str or field_str in expanded_query:
score = 100 * weight
if score > best_score:
best_score = score
best_match_type = "exact"
match_details = {"field": field_name, "query": expanded_query}
# Fuzzy matching for close matches
for expanded_query in expanded_queries:
if len(expanded_query) > 3: # Only fuzzy match longer queries
score = fuzz.partial_ratio(normalized_query, field_str) * weight
if score > best_score and score > 70:
best_score = score
best_match_type = "fuzzy"
match_details = {"field": field_name, "query": expanded_query}
if best_score > 70:
product_dict = row.to_dict()
product_dict['_score'] = best_score
product_dict['_match_type'] = best_match_type
product_dict['_match_details'] = match_details
scored_matches.append(product_dict)
scored_matches.sort(key=lambda x: x['_score'], reverse=True)
# Remove duplicates based on product name
seen_names = set()
unique_matches = []
for match in scored_matches:
if match['Product Name'] not in seen_names:
seen_names.add(match['Product Name'])
unique_matches.append(match)
return unique_matches
def normalize(text: str) -> str:
"""Normalize text for search"""
if not text:
return ""
# Convert to lowercase and remove extra whitespace
normalized = text.lower().strip()
# Remove special characters but keep spaces
normalized = re.sub(r'[^\w\s]', '', normalized)
# Replace multiple spaces with single space
normalized = re.sub(r'\s+', ' ', normalized)
return normalized
# Enhanced context management with veterinary domain awareness
class VeterinaryContextManager:
def __init__(self):
self.user_contexts = {}
self.conversation_history = defaultdict(list)
self.product_analytics = defaultdict(int)
self.session_data = {}
def get_context(self, phone_number: str) -> Dict[str, Any]:
"""Get or create user context with veterinary domain awareness"""
if phone_number not in self.user_contexts:
self.user_contexts[phone_number] = {
"current_state": "main_menu",
"current_menu": "main_menu",
"current_menu_options": ["Search Veterinary Products", "Browse Categories", "Download Catalog"],
"current_product": None,
"current_category": None,
"search_history": [],
"product_interests": [],
"species_preference": None,
"symptom_context": None,
"last_interaction": datetime.now(),
"session_start": datetime.now(),
"interaction_count": 0,
"last_message": "",
"available_categories": [],
"available_products": []
}
return self.user_contexts[phone_number]
def update_context(self, phone_number: str, **kwargs):
"""Update user context with veterinary domain data"""
context = self.get_context(phone_number)
context.update(kwargs)
context["last_interaction"] = datetime.now()
context["interaction_count"] += 1
# Track product interests for recommendations
if "current_product" in kwargs and kwargs["current_product"]:
product_name = kwargs["current_product"].get("Product Name", "")
if product_name:
context["product_interests"].append(product_name)
self.product_analytics[product_name] += 1
def add_to_history(self, phone_number: str, message: str, response: str):
"""Add interaction to conversation history"""
self.conversation_history[phone_number].append({
"timestamp": datetime.now(),
"user_message": message,
"bot_response": response
})
# Keep only last 20 interactions
if len(self.conversation_history[phone_number]) > 20:
self.conversation_history[phone_number] = self.conversation_history[phone_number][-20:]
def get_recommendations(self, phone_number: str) -> List[Dict[str, Any]]:
"""Get personalized product recommendations based on user history"""
context = self.get_context(phone_number)
recommendations = []
# Recommend based on product interests
if context["product_interests"]:
for product_name in context["product_interests"][-3:]: # Last 3 products
products = get_veterinary_product_matches(product_name)
if products:
# Find related products in same category
category = products[0].get("Category", "")
if category:
category_products = get_products_by_category(category)
for product in category_products[:3]:
if product.get("Product Name") != product_name:
recommendations.append(product)
# Remove duplicates and limit
seen = set()
unique_recommendations = []
for rec in recommendations:
name = rec.get("Product Name", "")
if name and name not in seen:
seen.add(name)
unique_recommendations.append(rec)
return unique_recommendations[:5]
# Initialize context manager
context_manager = VeterinaryContextManager()
# Enhanced product response with veterinary domain expertise
def generate_veterinary_product_response(product_info: Dict[str, Any], user_context: Dict[str, Any]) -> str:
"""Generate comprehensive veterinary product response with intelligent information handling"""
def clean_text(text):
if pd.isna(text) or text is None:
return "Not specified"
return str(text).strip()
# Extract product details
product_name = clean_text(product_info.get('Product Name', ''))
product_type = clean_text(product_info.get('Type', ''))
category = clean_text(product_info.get('Category', ''))
indications = clean_text(product_info.get('Indications', ''))
# Check for PDF link in the CSV data
pdf_link = ""
try:
# Load CSV data to check for PDF link
csv_data = pd.read_csv('Veterinary.csv')
product_row = csv_data[csv_data['Product Name'] == product_name]
if not product_row.empty:
brochure_link = product_row.iloc[0].get('Brochure (PDF)', '')
if pd.notna(brochure_link) and brochure_link.strip():
pdf_link = brochure_link.strip()
except Exception as e:
logger.warning(f"Error checking PDF link for {product_name}: {e}")
# Build the response
response = f"""🧪 *Name:* {product_name}
📦 *Type:* {product_type}
🏥 *Category:* {category}
💊 *Used For:* {indications}"""
# Add PDF link if available, in the requested format
if pdf_link:
response += f"\n\n📄 Product Brochure Available\n🔗 {product_name} PDF:\n{pdf_link}"
# Add menu options
response += f"""
💬 *Available Actions:*
1️⃣ Talk to Veterinary Consultant
2️⃣ Inquire About Availability
3️⃣ Back to Main Menu
💬 Select an option or ask about related products"""
return response
def clean_text_for_pdf(text: str) -> str:
"""Clean text for PDF generation"""
if pd.isna(text) or text is None:
return "N/A"
cleaned = str(text)
# Remove or replace problematic characters for PDF
cleaned = cleaned.replace('â€"', '-').replace('â€"', '"').replace('’', "'")
cleaned = cleaned.replace('“', '"').replace('â€', '"').replace('…', '...')
cleaned = re.sub(r'[^\w\s\-.,()%:;]', '', cleaned)
return cleaned.strip()
# Enhanced PDF generation with veterinary domain expertise
def generate_veterinary_pdf(product: Dict[str, Any]) -> bytes:
"""
Generate comprehensive veterinary PDF with professional formatting
"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4)
styles = getSampleStyleSheet()
# Veterinary-specific styles
title_style = ParagraphStyle(
'VeterinaryTitle',
parent=styles['Heading1'],
fontSize=18,
spaceAfter=25,
alignment=TA_CENTER,
textColor=colors.darkblue,
fontName='Helvetica-Bold'
)
heading_style = ParagraphStyle(
'VeterinaryHeading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=12,
textColor=colors.darkgreen,
fontName='Helvetica-Bold'
)
normal_style = ParagraphStyle(
'VeterinaryNormal',
parent=styles['Normal'],
fontSize=11,
spaceAfter=8,
alignment=TA_JUSTIFY,
fontName='Helvetica'
)
# Build PDF content
story = []
# Header with veterinary branding
story.append(Paragraph("🏥 APEX BIOTICAL VETERINARY PRODUCTS", title_style))
story.append(Spacer(1, 20))
# Product information
product_name = clean_text_for_pdf(product.get('Product Name', 'Unknown Product'))
story.append(Paragraph(f"<b>Product: {product_name}</b>", heading_style))
story.append(Spacer(1, 15))
# Clinical information table
clinical_info = [
['Field', 'Information'],
['Product Name', clean_text_for_pdf(product.get('Product Name', 'N/A'))],
['Category', clean_text_for_pdf(product.get('Category', 'N/A'))],
['Target Species', clean_text_for_pdf(product.get('Target Species', 'N/A'))],
['Product Type', clean_text_for_pdf(product.get('Type', 'N/A'))]
]
clinical_table = Table(clinical_info, colWidths=[2*inch, 4*inch])
clinical_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.lightblue),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(Paragraph("Clinical Information", heading_style))
story.append(clinical_table)
story.append(Spacer(1, 20))
# Clinical details
if product.get('Indications'):
story.append(Paragraph("Clinical Indications", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Indications')), normal_style))
story.append(Spacer(1, 15))
if product.get('Composition'):
story.append(Paragraph("Composition", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Composition')), normal_style))
story.append(Spacer(1, 15))
if product.get('Dosage & Administration'):
story.append(Paragraph("Dosage & Administration", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Dosage & Administration')), normal_style))
story.append(Spacer(1, 15))
if product.get('Precautions'):
story.append(Paragraph("Precautions", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Precautions')), normal_style))
story.append(Spacer(1, 15))
if product.get('Storage'):
story.append(Paragraph("Storage", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Storage')), normal_style))
story.append(Spacer(1, 15))
# Veterinary disclaimer
story.append(Paragraph("Veterinary Disclaimer", heading_style))
disclaimer_text = (
"This product should be used under veterinary supervision. "
"Always consult with a qualified veterinarian before administration. "
"Follow dosage instructions precisely and monitor animal response. "
"Store according to manufacturer guidelines and keep out of reach of children."
)
story.append(Paragraph(disclaimer_text, normal_style))
# Build PDF
doc.build(story)
buffer.seek(0)
return buffer.getvalue()
async def send_catalog_pdf(phone_number: str):
"""Send the complete product catalog as a link to the PDF"""
try:
# Use the correct Google Drive link converted to direct download format
catalog_url = "https://drive.google.com/uc?export=download&id=1mxpkFf3DY-n3QHzZBe_CdksR-gHu2f_0"
message = (
"📋 *Apex Biotical Veterinary Products Catalog*\n\n"
"📄 Here's your complete product catalog with all our veterinary products:\n"
f"📎 [Apex Biotical Veterinary Products Catalog.pdf]({catalog_url})\n\n"
"💬 For detailed information about any specific product, type its name or contact our sales team.\n\n"
"Type main at any time to return to the main menu."
)
send_whatsjet_message(phone_number, message)
except Exception as e:
logger.error(f"Error sending catalog: {e}")
send_whatsjet_message(phone_number,
"❌ Error sending catalog. Please try again or contact our sales team for assistance.")
async def send_individual_product_pdf(phone_number: str, product: Dict[str, Any]):
"""Send individual product PDF with download link"""
try:
# Generate PDF for the product
pdf_content = generate_veterinary_pdf(product)
# Create filename
product_name = product.get('Product Name', 'Unknown_Product')
safe_name = re.sub(r'[^\w\s-]', '', product_name).replace(' ', '_')
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{safe_name}_{timestamp}.pdf"
# Save PDF to uploads directory
uploads_dir = "../uploads"
os.makedirs(uploads_dir, exist_ok=True)
pdf_path = os.path.join(uploads_dir, filename)
with open(pdf_path, 'wb') as f:
f.write(pdf_content)
# Generate download URL
base_url = os.getenv("PUBLIC_BASE_URL", "http://localhost:8000")
download_url = f"{base_url}/uploads/{filename}"
# Send PDF via WhatsApp media
success = send_whatsjet_message(
phone_number,
f"📄 *{product_name} - Product Information*\n\nHere's the detailed product information in PDF format.",
media_type="application/pdf",
media_path=pdf_path,
filename=filename
)
# Also send direct download link as backup
if success:
message = (
f"📄 *{product_name} - Product Information*\n\n"
"📎 [Direct Download Link]({download_url})\n\n"
"💬 *If the PDF didn't download, use the link above*\n"
"Type 'main' to return to main menu."
)
send_whatsjet_message(phone_number, message)
else:
# If media send failed, send only the link
message = (
f"📄 *{product_name} - Product Information*\n\n"
"📎 [Download Product PDF]({download_url})\n\n"
"💬 *Click the link above to download the product information*\n"
"Type 'main' to return to main menu."
)
send_whatsjet_message(phone_number, message)
except Exception as e:
logger.error(f"Error sending individual product PDF: {e}")
send_whatsjet_message(phone_number,
"❌ Error generating product PDF. Please try again or contact our sales team for assistance.")
# --- WhatsJet Message Sending ---
def split_message_for_whatsapp(message: str, max_length: int = 1000) -> list:
"""Split a long message into chunks for WhatsApp (max 1000 chars per message)."""
return [message[i:i+max_length] for i in range(0, len(message), max_length)]
def send_whatsjet_message(phone_number: str, message: str, media_type: str = None, media_path: str = None, filename: str = None) -> bool:
"""Send a message using WhatsJet API with optional media attachment or public URL"""
if not all([WHATSJET_API_URL, WHATSJET_VENDOR_UID, WHATSJET_API_TOKEN]):
logger.error("[WhatsJet] Missing environment variables.")
return False
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-message?token={WHATSJET_API_TOKEN}"
# Handle media messages (local file or public URL)
if media_type and media_path:
# If media_path is a public URL, use media_url and send caption
if isinstance(media_path, str) and media_path.startswith("http"):
# Try different payload formats for WhatsJet API
payload_formats = [
# Format 1: Using caption field
{
"phone_number": phone_number,
"caption": message,
"media_type": media_type,
"media_url": media_path,
"media_filename": filename or os.path.basename(media_path)
},
# Format 2: Using message_body instead of caption
{
"phone_number": phone_number,
"message_body": message,
"media_type": media_type,
"media_url": media_path,
"media_filename": filename or os.path.basename(media_path)
},
# Format 3: Simplified format without media_filename
{
"phone_number": phone_number,
"message_body": message,
"media_type": media_type,
"media_url": media_path
},
# Format 4: Using different field names
{
"phone_number": phone_number,
"caption": message,
"type": media_type,
"url": media_path
}
]
for i, payload in enumerate(payload_formats, 1):
try:
logger.info(f"[WhatsJet] Trying payload format {i}: {payload}")
response = httpx.post(
url,
json=payload,
timeout=15
)
if response.status_code == 200:
logger.info(f"[WhatsJet] Media URL message sent successfully with format {i} to {phone_number}")
return True
else:
logger.warning(f"[WhatsJet] Format {i} failed with status {response.status_code}: {response.text[:200]}")
except Exception as e:
logger.warning(f"[WhatsJet] Format {i} exception: {e}")
continue
# If all formats failed, log the error and return False
logger.error(f"[WhatsJet] All media URL payload formats failed for {phone_number}")
return False
else:
# Local file logic as before
try:
with open(media_path, 'rb') as f:
media_content = f.read()
media_b64 = base64.b64encode(media_content).decode('utf-8')
payload = {
"phone_number": phone_number,
"message_body": message,
'media_type': media_type,
'media_content': media_b64,
'media_filename': filename or os.path.basename(media_path)
}
try:
response = httpx.post(
url,
json=payload,
timeout=15
)
response.raise_for_status()
logger.info(f"[WhatsJet] Media message sent successfully to {phone_number}")
return True
except Exception as e:
logger.error(f"[WhatsJet] Exception sending media message: {e}")
return False
except Exception as e:
logger.error(f"[WhatsJet] Exception preparing media message: {str(e)}")
return False
# Handle text messages
if not message.strip():
return True # Don't send empty messages
for chunk in split_message_for_whatsapp(message):
try:
payload = {"phone_number": phone_number, "message_body": chunk}
try:
response = httpx.post(
url,
json=payload,
timeout=15
)
response.raise_for_status()
logger.info(f"[WhatsJet] Text chunk sent successfully to {phone_number}")
except Exception as e:
logger.error(f"[WhatsJet] Exception sending text chunk: {e}")
return False
except Exception as e:
logger.error(f"[WhatsJet] Exception preparing text chunk: {str(e)}")
return False
logger.info(f"[WhatsJet] Successfully sent complete text message to {phone_number}")
return True
def send_whatsjet_media_image_only(phone_number: str, image_url: str, filename: str = None) -> bool:
"""Send an image with optional caption using WhatsJet's /contact/send-media-message endpoint."""
if not all([WHATSJET_API_URL, WHATSJET_VENDOR_UID, WHATSJET_API_TOKEN]):
logger.error("[WhatsJet] Missing environment variables for media message.")
return False
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-media-message"
headers = {
"Authorization": f"Bearer {WHATSJET_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"phone_number": phone_number,
"media_type": "image",
"media_url": image_url
}
if filename:
payload["file_name"] = filename
try:
logger.info(f"[WhatsJet] Sending image with payload: {payload}")
response = httpx.post(url, json=payload, headers=headers, timeout=30)
logger.info(f"[WhatsJet] Image response status: {response.status_code}")
logger.info(f"[WhatsJet] Image response body: {response.text[:500]}...")
if response.status_code == 200:
logger.info(f"[WhatsJet] Image sent successfully to {phone_number}")
return True
else:
logger.error(f"[WhatsJet] Failed to send image: {response.status_code} - {response.text}")
return False
except Exception as e:
logger.error(f"[WhatsJet] Exception sending image: {e}")
return False
# --- Health Check Endpoint ---
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"products_loaded": len(products_df) if products_df is not None else 0,
"openai_available": bool(OPENAI_API_KEY),
"whatsjet_configured": bool(all([WHATSJET_API_URL, WHATSJET_VENDOR_UID, WHATSJET_API_TOKEN]))
}
@app.get("/test-voice")
async def test_voice():
"""Test endpoint to check voice processing logic"""
return {
"voice_detection": {
"audio_type": "audio" in ['audio', 'voice'],
"voice_type": "voice" in ['audio', 'voice'],
"media_audio": {'type': 'audio'}.get('type') == 'audio'
},
"openai_available": bool(OPENAI_API_KEY),
"langdetect_available": True,
"deep_translator_available": True
}
@app.get("/catalog")
async def get_catalog():
"""Serve the complete product catalog PDF"""
try:
catalog_path = "static/Hydropex.pdf"
if os.path.exists(catalog_path):
return FileResponse(
catalog_path,
media_type="application/pdf",
filename="Apex_Biotical_Veterinary_Catalog.pdf"
)
else:
raise HTTPException(status_code=404, detail="Catalog PDF not found")
except Exception as e:
logger.error(f"Error serving catalog: {e}")
raise HTTPException(status_code=500, detail="Error serving catalog")
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<h2>Apex Biotical Veterinary WhatsApp Assistant</h2>
<p>The Assistant is running! Use the API endpoints for WhatsApp integration.</p>
<ul>
<h2>Apex Biotical Veterinary WhatsApp Bot</h2>
<p>The bot is running! Use the API endpoints for WhatsApp integration.</p>
<ul>
<li><b>POST /webhook</b> – WhatsApp webhook endpoint</li>
<li><b>GET /health</b> – Health check</li>
<li><b>GET /catalog</b> – Download product catalog PDF</li>
</ul>
"""
# --- Webhook Endpoint for WhatsApp/WhatsJet ---
@app.post("/webhook")
async def webhook(request: Request):
"""Handle incoming WhatsApp/WhatsJet webhook messages"""
try:
data = await request.json()
logger.info(f"[Webhook] Incoming data: {data}")
# WhatsJet/Custom format
if isinstance(data, dict) and 'contact' in data and 'message' in data:
from_number = str(data['contact'].get('phone_number', '')).replace('+', '').replace(' ', '')
msg = data['message']
# Robust media type extraction
media = msg.get('media', {}) if isinstance(msg, dict) else {}
media_type = None
if isinstance(media, dict):
media_type = media.get('type')
# If media is a list or None, media_type stays None
# Check for voice/audio messages first (they might not have body)
if isinstance(msg, dict) and (msg.get('type') in ['audio', 'voice'] or media_type == 'audio'):
logger.info(f"[Webhook] Processing voice message from {from_number}")
await process_incoming_message(from_number, msg)
return Response(status_code=200)
# Ignore status updates and messages without body (only for non-voice messages)
if not isinstance(msg, dict) or msg.get('body') is None:
return Response(status_code=200)
# Ignore specific status updates
if msg.get('status') in ['delivered', 'sent', 'read', 'failed']:
return Response(status_code=200)
# Process actual message
await process_incoming_message(from_number, msg)
return Response(status_code=200)
# WhatsApp Cloud API format
if isinstance(data, dict) and 'entry' in data and isinstance(data['entry'], list):
for entry in data['entry']:
if not isinstance(entry, dict):
logger.error(f"[Webhook] entry is not a dict: {type(entry)}")
continue
changes = entry.get('changes', [])
if not isinstance(changes, list):
logger.error(f"[Webhook] changes is not a list: {type(changes)}")
continue
for change in changes:
if not isinstance(change, dict):
logger.error(f"[Webhook] change is not a dict: {type(change)}")
continue
value = change.get('value', {})
if not isinstance(value, dict):
logger.error(f"[Webhook] value is not a dict: {type(value)}")
continue
messages = value.get('messages', [])
if not isinstance(messages, list):
logger.error(f"[Webhook] messages is not a list: {type(messages)}")
continue
for message in messages:
if not isinstance(message, dict):
logger.error(f"[Webhook] message is not a dict: {type(message)}")
continue
from_number = message.get('from', '')
# Ignore status updates
if message.get('type') == 'status':
continue
# Convert WhatsApp format to our format
msg = {
'body': message.get('text', {}).get('body', ''),
'type': message.get('type', 'text'),
'media': message.get('audio') or message.get('voice') or message.get('image') or message.get('document')
}
await process_incoming_message(from_number, msg)
return Response(status_code=200)
logger.warning(f"[Webhook] Unrecognized or malformed payload format: {type(data)}")
return Response(status_code=400)
except Exception as e:
logger.error(f"[Webhook] Error: {e}")
import traceback
logger.error(f"[Webhook] Traceback: {traceback.format_exc()}")
return Response(status_code=500)
def map_spoken_number_to_digit(text: str) -> str:
"""
Enhanced number mapping for voice input - supports both English and Urdu number systems
Handles various transcription errors and number formats
"""
if not text:
return ""
# Clean and normalize the text
text_lower = text.lower().strip()
text_clean = re.sub(r'[^\w\s]', '', text_lower)
# Comprehensive English number mappings
english_numbers = {
# Basic numbers
'one': '1', 'two': '2', 'three': '3', 'four': '4', 'five': '5',
'six': '6', 'seven': '7', 'eight': '8', 'nine': '9', 'ten': '10',
'eleven': '11', 'twelve': '12', 'thirteen': '13', 'fourteen': '14', 'fifteen': '15',
'sixteen': '16', 'seventeen': '17', 'eighteen': '18', 'nineteen': '19', 'twenty': '20',
'twenty one': '21', 'twenty two': '22', 'twenty three': '23',
# Common transcription errors
'won': '1', 'to': '2', 'too': '2', 'tree': '3', 'free': '3', 'for': '4', 'fiv': '5',
'sik': '6', 'sat': '7', 'ath': '8', 'nau': '9', 'das': '10',
'che': '3', 'fir': '4', 'fiv': '5', 'sik': '6', 'sat': '7', 'ath': '8', 'nau': '9',
# Ordinal numbers
'first': '1', 'second': '2', 'third': '3', 'fourth': '4', 'fifth': '5',
'sixth': '6', 'seventh': '7', 'eighth': '8', 'ninth': '9', 'tenth': '10',
# Menu variations
'option one': '1', 'option two': '2', 'option three': '3', 'option four': '4', 'option five': '5',
'number one': '1', 'number two': '2', 'number three': '3', 'number four': '4', 'number five': '5',
'menu one': '1', 'menu two': '2', 'menu three': '3', 'menu four': '4', 'menu five': '5',
'choice one': '1', 'choice two': '2', 'choice three': '3', 'choice four': '4', 'choice five': '5',
# Common transcription errors for menu selections
'opium one': '1', 'opium two': '2', 'opium three': '3', 'opium four': '4', 'opium five': '5',
'opium numara one': '1', 'opium numara two': '2', 'opium numara three': '3',
'opium number one': '1', 'opium number two': '2', 'opium number three': '3',
'opium number 1': '1', 'opium number 2': '2', 'opium number 3': '3',
# Direct digits
'1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '6': '6', '7': '7', '8': '8', '9': '9', '10': '10',
'11': '11', '12': '12', '13': '13', '14': '14', '15': '15', '16': '16', '17': '17', '18': '18', '19': '19', '20': '20',
'21': '21', '22': '22', '23': '23'
}
# Comprehensive Urdu number mappings (Roman Urdu and Urdu script)
urdu_numbers = {
# Roman Urdu numbers
'aik': '1', 'ek': '1', 'do': '2', 'teen': '3', 'char': '4', 'panch': '5',
'che': '6', 'sat': '7', 'ath': '8', 'nau': '9', 'das': '10',
'gyara': '11', 'bara': '12', 'tera': '13', 'choda': '14', 'pandra': '15',
'sola': '16', 'satara': '17', 'athara': '18', 'unnees': '19', 'bees': '20',
'ikkees': '21', 'baees': '22', 'tees': '23',
# Urdu script numbers
'ایک': '1', 'دو': '2', 'تین': '3', 'چار': '4', 'پانچ': '5',
'چھ': '6', 'سات': '7', 'آٹھ': '8', 'نو': '9', 'دس': '10',
'گیارہ': '11', 'بارہ': '12', 'تیرہ': '13', 'چودہ': '14', 'پندرہ': '15',
'سولہ': '16', 'سترہ': '17', 'اٹھارہ': '18', 'انیس': '19', 'بیس': '20',
'اکیس': '21', 'بائیس': '22', 'تئیس': '23',
# Menu variations in Urdu
'نمبر ایک': '1', 'نمبر دو': '2', 'نمبر تین': '3', 'نمبر چار': '4', 'نمبر پانچ': '5',
'آپشن ایک': '1', 'آپشن دو': '2', 'آپشن تین': '3', 'آپشن چار': '4', 'آپشن پانچ': '5',
'اختیار ایک': '1', 'اختیار دو': '2', 'اختیار تین': '3', 'اختیار چار': '4', 'اختیار پانچ': '5',
# Common transcription errors in Urdu
'numara': 'number', 'numbara': 'number', 'numbra': 'number',
'numbra one': '1', 'numbra two': '2', 'numbra three': '3', 'numbra 1': '1', 'numbra 2': '2', 'numbra 3': '3',
'aik': '1', 'ek': '1', 'do': '2', 'teen': '3', 'char': '4', 'panch': '5',
'che': '6', 'sat': '7', 'ath': '8', 'nau': '9', 'das': '10'
}
# Combined mappings
all_numbers = {**english_numbers, **urdu_numbers}
# First, try exact matches
if text_lower in all_numbers:
return all_numbers[text_lower]
# Try pattern matching for common transcription errors - improved patterns
patterns = [
(r'opium\s+numara?\s*(\d+)', r'\1'), # "opium numara 1" -> "1"
(r'opium\s+number?\s*(\d+)', r'\1'), # "opium number 1" -> "1"
(r'opium\s+(\d+)', r'\1'), # "opium 1" -> "1"
(r'numara?\s*(\d+)', r'\1'), # "numara 1" -> "1"
(r'number?\s*(\d+)\s*[.!]?', r'\1'), # "number 1" or "number 1." -> "1" - improved
(r'option\s*(\d+)\s*[.!]?', r'\1'), # "option 1" or "option 1." -> "1" - improved
(r'choice\s*(\d+)\s*[.!]?', r'\1'), # "choice 1" or "choice 1." -> "1" - improved
(r'menu\s*(\d+)\s*[.!]?', r'\1'), # "menu 1" or "menu 1." -> "1" - improved
(r'(\d+)\s*[.!]?\s*$', r'\1'), # "22." -> "22" - improved
(r'^(\d+)\s*[.!]?\s*', r'\1'), # "22." -> "22" - improved
]
for pattern, replacement in patterns:
match = re.search(pattern, text_lower)
if match:
return match.group(1)
# Try fuzzy matching for close matches
for number_word, digit in all_numbers.items():
if len(number_word) > 2: # Only fuzzy match longer words
if fuzz.ratio(text_lower, number_word) > 80:
logger.info(f"Fuzzy matched '{text_lower}' to '{number_word}' -> '{digit}'")
return digit
# Try extracting numbers from mixed text
number_match = re.search(r'(\d+)', text_clean)
if number_match:
return number_match.group(1)
# If no match found, return original text
logger.warning(f"No number mapping found for: '{text}'")
return text
def process_intelligent_voice_command(message_body: str, current_state: str, user_context: dict) -> str:
"""
Process voice commands intelligently for all menu states
Maps voice commands to appropriate menu selections consistently with text logic
"""
if not message_body:
return message_body
# Clean and normalize the input
cleaned_text = message_body.strip().lower()
logger.info(f"[Voice Command] Processing: '{message_body}' in state: {current_state}")
# First, check for navigation commands (main, menu, back, etc.)
# Make this more precise to avoid false positives from transcription errors
navigation_commands = [
'main', 'menu', 'start', 'home', 'back', 'return', 'go back', 'main menu',
'مین', 'مینو', 'شروع', 'گھر', 'واپس', 'ریٹرن', 'مین مینو',
'main menu', 'main menu please', 'go to main', 'back to main'
]
# Check for exact navigation commands or commands that start/end with navigation words
for cmd in navigation_commands:
# Check for exact match
if cleaned_text == cmd:
logger.info(f"[Voice Command] Exact navigation command detected: '{message_body}' -> 'main'")
return 'main'
# Check for commands that start with navigation word followed by space
if cleaned_text.startswith(cmd + ' '):
logger.info(f"[Voice Command] Navigation command at start detected: '{message_body}' -> 'main'")
return 'main'
# Check for commands that end with navigation word preceded by space
if cleaned_text.endswith(' ' + cmd):
logger.info(f"[Voice Command] Navigation command at end detected: '{message_body}' -> 'main'")
return 'main'
# Check for standalone navigation commands (surrounded by spaces or at boundaries)
if re.search(r'\b' + re.escape(cmd) + r'\b', cleaned_text):
# Additional check: make sure it's not part of a larger word
words = cleaned_text.split()
if cmd in words:
logger.info(f"[Voice Command] Navigation command as word detected: '{message_body}' -> 'main'")
return 'main'
# Handle number patterns more comprehensively
# Pattern 1: "Number X" or "Number X." or "Number X!" - more flexible
number_pattern1 = re.search(r'number\s*(\d+)\s*[.!]?', cleaned_text)
if number_pattern1:
number = number_pattern1.group(1)
logger.info(f"[Voice Command] Number pattern 1 detected: '{message_body}' -> '{number}'")
return number
# Pattern 2: "Option X" or "Option X." or "Option X!" - more flexible
option_pattern = re.search(r'option\s*(\d+)\s*[.!]?', cleaned_text)
if option_pattern:
number = option_pattern.group(1)
logger.info(f"[Voice Command] Option pattern detected: '{message_body}' -> '{number}'")
return number
# Pattern 3: "Product X" or "Product X." or "Product X!" - more flexible
product_pattern = re.search(r'product\s*(\d+)\s*[.!]?', cleaned_text)
if product_pattern:
number = product_pattern.group(1)
logger.info(f"[Voice Command] Product pattern detected: '{message_body}' -> '{number}'")
return number
# Pattern 4: "Category X" or "Category X." or "Category X!" - more flexible
category_pattern = re.search(r'category\s*(\d+)\s*[.!]?', cleaned_text)
if category_pattern:
number = category_pattern.group(1)
logger.info(f"[Voice Command] Category pattern detected: '{message_body}' -> '{number}'")
return number
# Pattern 5: Just a number at the end or beginning - more flexible
# Look for numbers at the end of the sentence
number_pattern2 = re.search(r'(\d+)\s*[.!]?\s*$', cleaned_text)
if number_pattern2:
number = number_pattern2.group(1)
logger.info(f"[Voice Command] Number pattern 2 detected: '{message_body}' -> '{number}'")
return number
# Pattern 6: Just a number at the beginning - more flexible
number_pattern3 = re.search(r'^(\d+)\s*[.!]?\s*', cleaned_text)
if number_pattern3:
number = number_pattern3.group(1)
logger.info(f"[Voice Command] Number pattern 3 detected: '{message_body}' -> '{number}'")
return number
# Pattern 7: Standalone number
if cleaned_text.isdigit():
logger.info(f"[Voice Command] Standalone number detected: '{message_body}' -> '{message_body}'")
return message_body
# Pattern 8: Extract any number from the text (fallback)
any_number_pattern = re.search(r'(\d+)', cleaned_text)
if any_number_pattern:
number = any_number_pattern.group(1)
logger.info(f"[Voice Command] Any number pattern detected: '{message_body}' -> '{number}'")
return number
# Handle spoken numbers in English and Urdu
spoken_number_mappings = {
# English spoken numbers
'one': '1', 'first': '1', '1st': '1',
'two': '2', 'second': '2', '2nd': '2', 'to': '2', 'too': '2',
'three': '3', 'third': '3', '3rd': '3', 'tree': '3',
'four': '4', 'fourth': '4', '4th': '4', 'for': '4',
'five': '5', 'fifth': '5', '5th': '5',
'six': '6', 'sixth': '6', '6th': '6',
'seven': '7', 'seventh': '7', '7th': '7',
'eight': '8', 'eighth': '8', '8th': '8',
'nine': '9', 'ninth': '9', '9th': '9',
'ten': '10', 'tenth': '10', '10th': '10',
'eleven': '11', 'eleventh': '11', '11th': '11',
'twelve': '12', 'twelfth': '12', '12th': '12',
'thirteen': '13', 'thirteenth': '13', '13th': '13',
'fourteen': '14', 'fourteenth': '14', '14th': '14',
'fifteen': '15', 'fifteenth': '15', '15th': '15',
'sixteen': '16', 'sixteenth': '16', '16th': '16',
'seventeen': '17', 'seventeenth': '17', '17th': '17',
'eighteen': '18', 'eighteenth': '18', '18th': '18',
'nineteen': '19', 'nineteenth': '19', '19th': '19',
'twenty': '20', 'twentieth': '20', '20th': '20',
'twenty one': '21', 'twenty-first': '21', '21st': '21',
'twenty two': '22', 'twenty-second': '22', '22nd': '22',
'twenty three': '23', 'twenty-third': '23', '23rd': '23',
# Urdu spoken numbers
'ایک': '1', 'پہلا': '1', 'پہلی': '1',
'دو': '2', 'دوسرا': '2', 'دوسری': '2',
'تین': '3', 'تیسرا': '3', 'تیسری': '3',
'چار': '4', 'چوتھا': '4', 'چوتھی': '4',
'پانچ': '5', 'پانچواں': '5', 'پانچویں': '5',
'چھ': '6', 'چھٹا': '6', 'چھٹی': '6',
'سات': '7', 'ساتواں': '7', 'ساتویں': '7',
'آٹھ': '8', 'آٹھواں': '8', 'آٹھویں': '8',
'نو': '9', 'نواں': '9', 'نویں': '9',
'دس': '10', 'دسواں': '10', 'دسویں': '10',
'گیارہ': '11', 'گیارہواں': '11', 'گیارہویں': '11',
'بارہ': '12', 'بارہواں': '12', 'بارہویں': '12',
'تیرہ': '13', 'تیرہواں': '13', 'تیرہویں': '13',
'چودہ': '14', 'چودہواں': '14', 'چودہویں': '14',
'پندرہ': '15', 'پندرہواں': '15', 'پندرہویں': '15',
'سولہ': '16', 'سولہواں': '16', 'سولہویں': '16',
'سترہ': '17', 'سترہواں': '17', 'سترہویں': '17',
'اٹھارہ': '18', 'اٹھارہواں': '18', 'اٹھارہویں': '18',
'انیس': '19', 'انیسواں': '19', 'انیسویں': '19',
'بیس': '20', 'بیسواں': '20', 'بیسویں': '20',
'اکیس': '21', 'اکیسواں': '21', 'اکیسویں': '21',
'بائیس': '22', 'بائیسواں': '22', 'بائیسویں': '22',
'تئیس': '23', 'تئیسواں': '23', 'تئیسویں': '23',
}
# Check for spoken numbers
for spoken, digit in spoken_number_mappings.items():
if spoken in cleaned_text:
logger.info(f"[Voice Command] Spoken number detected: '{message_body}' -> '{digit}'")
return digit
# Handle common transcription errors and variations
transcription_fixes = {
'bye': 'hi', # Common transcription error for "hi"
'hi': 'hi',
'hello': 'hi',
'hey': 'hi',
'main': 'main',
'menu': 'main',
'start': 'main',
'home': 'main',
'back': 'main',
'return': 'main',
'go back': 'main',
'main menu': 'main',
'main menu please': 'main',
'go to main': 'main',
'back to main': 'main',
}
# Check for transcription fixes
for error, correction in transcription_fixes.items():
if error in cleaned_text:
logger.info(f"[Voice Command] Transcription fix applied: '{message_body}' -> '{correction}'")
return correction
# If no pattern matches, return the original message for further processing
logger.info(f"[Voice Command] No specific pattern matched, returning original: '{message_body}'")
return message_body
async def process_incoming_message(from_number: str, msg: dict):
"""Process incoming message and send appropriate response with full intelligence"""
try:
# Safety check for message body
message_body = msg.get('body') if isinstance(msg, dict) else None
message_type = msg.get('type', 'text') if isinstance(msg, dict) else 'text'
reply_language = msg.get('reply_language', 'en') # Default to English
# Robust media type extraction
media = msg.get('media', {}) if isinstance(msg, dict) else {}
media_type = None
if isinstance(media, dict):
media_type = media.get('type')
# If media is a list or None, media_type stays None
# Handle voice messages FIRST - before checking message_body
if message_type in ['audio', 'voice'] or media_type == 'audio':
logger.info(f"[Process] Processing voice message from {from_number}")
await handle_voice_message_complete(from_number, msg)
return
# For text messages, check if body exists
if message_body is None:
logger.info(f"[Process] Skipping message from {from_number} - no body content")
return
message_body = message_body.strip()
logger.info(f"[Process] Processing {message_type} message from {from_number}: {message_body}")
# Get user context
user_context = context_manager.get_context(from_number)
current_state = user_context.get('current_state', 'main_menu')
# Update context with last message for intelligent responses
context_manager.update_context(from_number, last_message=message_body)
# Debug logging
logger.info(f"[Process] Current state: {current_state}, Message: '{message_body}' from {from_number}")
# Handle text messages
if not message_body:
return
# 🎯 PRIORITY 1: Check for greetings FIRST (before any other processing)
if is_greeting(message_body):
logger.info(f"[Process] Greeting detected: '{message_body}' -> showing welcome message")
# Always show welcome message for greetings, regardless of current state
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# 🎯 PRIORITY 2: Navigation commands - work from ANY state
# Check for "main" command - now works for both text and voice
if current_state != 'main_menu' and current_state != 'ai_chat_mode': # Only check for main if not already in main menu and not in AI chat mode
mapped_navigation = process_intelligent_voice_command(message_body, current_state, user_context)
if mapped_navigation == 'main':
logger.info(f"[Process] Navigation command detected: '{message_body}' -> 'main'")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# Also check for text-based navigation commands
if message_body.lower() in ['main', 'menu', 'start', 'home', 'back']:
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# 🎯 PRIORITY 3: State-specific handling (contact_request, availability_request, ai_chat_mode)
if current_state == 'contact_request':
await handle_contact_request_response(from_number, message_body)
return
elif current_state == 'availability_request':
await handle_availability_request_response(from_number, message_body)
return
elif current_state == 'ai_chat_mode':
await handle_ai_chat_mode(from_number, message_body, reply_language)
return
# 🎯 PRIORITY 4: Menu selections - check if this is a valid menu selection for current state
if current_state in ['main_menu', 'category_selection_menu', 'category_products_menu', 'all_products_menu', 'product_inquiry', 'intelligent_products_menu']:
# Validate menu selection
is_valid, error_msg = validate_menu_selection(message_body, current_state, user_context)
if is_valid:
# Handle valid menu selection
if current_state == 'main_menu':
if message_body == '1':
# Search Products
await display_all_products(from_number)
elif message_body == '2':
# Browse Categories
categories = get_all_categories()
if categories:
context_manager.update_context(
from_number,
current_state='category_selection_menu',
current_menu='category_selection_menu',
current_menu_options=categories,
available_categories=categories
)
message = "📁 *Select a Category:*\n\n"
for i, category in enumerate(categories, 1):
message += f"{format_number_with_emoji(i)} {category}\n"
message += "\n💬 Type a category number or 'main' to return to main menu."
send_whatsjet_message(from_number, message)
else:
send_whatsjet_message(from_number, "❌ No categories available. Type 'main' to return to main menu.")
elif message_body == '3':
# Download Catalog
await send_catalog_pdf(from_number)
elif message_body == '4':
# AI Chat Mode
context_manager.update_context(
from_number,
current_state='ai_chat_mode',
current_menu='ai_chat_mode',
current_menu_options=['main'],
reply_language='ur'
)
message = (
"🤖 ویٹرنری اے آئی اسسٹنٹ\n\n"
"آپ مجھ سے پوچھ سکتے ہیں:\n"
"• ویٹرنری سوالات\n"
"• پروڈکٹ کی سفارشات\n"
"• علاج کے مشورے\n"
"• عمومی معلومات\n\n"
"💬 'main' لکھ کر مین مینو پر واپس جائیں۔"
)
send_whatsjet_message(from_number, message)
elif current_state == 'category_selection_menu':
await handle_category_selection(message_body, from_number)
elif current_state == 'category_products_menu':
# Handle product selection from category
available_products = user_context.get('available_products', [])
if message_body.isdigit() and 1 <= int(message_body) <= len(available_products):
selected_product = available_products[int(message_body) - 1]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context)
else:
send_whatsjet_message(from_number, get_menu_validation_message(current_state, user_context))
elif current_state == 'all_products_menu':
# Handle product selection from all products
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
if message_body.isdigit() and 1 <= int(message_body) <= len(all_products):
selected_product = all_products[int(message_body) - 1]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context)
else:
send_whatsjet_message(from_number, get_menu_validation_message(current_state, user_context))
else:
send_whatsjet_message(from_number, "❌ No products available. Type 'main' to return to main menu.")
elif current_state == 'product_inquiry':
await handle_veterinary_product_followup(message_body, from_number)
elif current_state == 'intelligent_products_menu':
# Handle product selection from intelligent products menu
available_products = user_context.get('available_products', [])
if message_body.isdigit() and 1 <= int(message_body) <= len(available_products):
selected_product = available_products[int(message_body) - 1]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context)
return
else:
send_whatsjet_message(from_number, get_menu_validation_message(current_state, user_context))
return
return # Exit after handling menu selection
# 🎯 PRIORITY 5: Check for company/about queries first (before product search)
query_lower = message_body.lower().strip()
if any(keyword in query_lower for keyword in ['apex', 'company', 'about', 'who', 'what is']):
# Use OpenAI for company information
await handle_general_query_with_ai(from_number, message_body, user_context, reply_language)
return
# 🎯 PRIORITY 6: Check for product-specific questions (mode of action, dosage, etc.)
product_question_keywords = ['mode of action', 'dosage', 'administration', 'composition', 'indications', 'precautions', 'storage', 'how to use', 'side effects']
if any(keyword in query_lower for keyword in product_question_keywords):
# Use OpenAI for product-specific questions
await handle_general_query_with_ai(from_number, message_body, user_context, reply_language)
return
# 🎯 PRIORITY 7: Product names - works from ANY menu state
# This ensures users can say product names like "hydropex", "respira aid plus", etc. from any menu
logger.info(f"[Process] Checking for product name in message: '{message_body}' from state: {current_state}")
products = get_veterinary_product_matches(message_body)
# --- NEW LOGIC: Check for exact match first ---
normalized_input = normalize(message_body).lower().strip()
exact_match = None
for product in products:
product_name = product.get('Product Name', '')
normalized_product_name = normalize(product_name).lower().strip()
if normalized_product_name == normalized_input:
exact_match = product
break
if exact_match:
logger.info(f"[Process] Exact product match found: {exact_match.get('Product Name', 'Unknown')}")
context_manager.update_context(
from_number,
current_product=exact_match,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
# Only send one reply: image+caption if possible, else text
await send_product_image_with_caption(from_number, exact_match, user_context)
return
# --- END NEW LOGIC ---
if products:
logger.info(f"[Process] Product name detected: '{message_body}' -> Found {len(products)} products")
# Check if this is a specific product name search or a category/symptom search
is_specific_product = False
# Check for exact product name match (indicating specific product search)
normalized_input = normalize(message_body).lower().strip()
for product in products:
product_name = product.get('Product Name', '')
normalized_product_name = normalize(product_name).lower().strip()
if normalized_product_name == normalized_input:
is_specific_product = True
break
# If it's a specific product name, show only that product
if is_specific_product and len(products) == 1:
selected_product = products[0]
product_name = selected_product.get('Product Name', 'Unknown')
logger.info(f"[Process] Specific product found: {product_name}")
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context)
return
# If it's a category/symptom search with multiple products, show all products
else:
logger.info(f"[Process] Category/symptom search with {len(products)} products")
# Use intelligent product inquiry to show all matching products
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
return
else:
# Check for specific query types before falling back to generic response
query_lower = message_body.lower().strip()
# Check for company/about queries
if any(keyword in query_lower for keyword in ['apex', 'company', 'about', 'who', 'what is']):
# Use OpenAI for company information
await handle_general_query_with_ai(from_number, message_body, user_context, reply_language)
return
# Check for product-specific questions (mode of action, dosage, etc.)
product_question_keywords = ['mode of action', 'dosage', 'administration', 'composition', 'indications', 'precautions', 'storage', 'how to use', 'side effects']
if any(keyword in query_lower for keyword in product_question_keywords):
# Use OpenAI for product-specific questions
await handle_general_query_with_ai(from_number, message_body, user_context, reply_language)
return
# Check for general veterinary questions
veterinary_keywords = ['weather', 'temperature', 'disease', 'symptoms', 'treatment', 'prevention', 'vaccination', 'nutrition', 'health']
if any(keyword in query_lower for keyword in veterinary_keywords):
# Simple redirect for non-veterinary topics
send_whatsjet_message(from_number, "❌ Please ask the correct question related to Apex Biotical Solutions or type 'main' to go to main menu.")
return
# Simple one-liner for wrong queries
send_whatsjet_message(from_number, "❌ Please correct your question or type 'main' to go to main menu.")
# 🎯 PRIORITY 8: Default: treat as general query with intelligent product inquiry
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
except Exception as e:
logger.error(f"Error in process_incoming_message: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(from_number, current_state='main_menu', current_menu='main_menu', current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()))
async def handle_general_query_with_ai(from_number: str, query: str, user_context: dict, reply_language: str = 'en'):
"""Handle general queries with OpenAI intelligence"""
reply_language = 'ur'
logger.info(f"[AI General] Forcing reply_language to Urdu for Option 4.")
try:
if not openai.api_key:
send_whatsjet_message(from_number,
"❌ AI assistance is not available. Please try searching for a specific product or type 'main' for the menu.")
return
current_state = user_context.get('current_state', 'main_menu')
current_product = user_context.get('current_product')
prompt = f"""
You are a professional veterinary product assistant for Apex Biotical Solutions, helping users on WhatsApp.
Always answer in a clear, accurate, and helpful manner with proper formatting and emojis.
User Query: "{query}"
Current State: {current_state}
Current Product: {current_product.get('Product Name', 'None') if current_product else 'None'}
IMPORTANT INSTRUCTIONS:
1. If the user asks about "Apex" or "Apex Biotical" - provide a brief, professional overview of Apex Biotical Solutions as a veterinary pharmaceutical company, including their expertise, product range, and commitment to animal health. Keep it concise and welcoming.
2. If the user asks about specific product details (mode of action, dosage, administration, composition, etc.) - search through the veterinary products database and provide detailed, accurate information about the specific product mentioned. If the product exists in the database, provide comprehensive details. If not found, suggest similar products.
3. If the user asks about products (e.g., 'poultry products', 'respiratory medicine'), list ALL relevant products from the database with a short description for each.
4. If the user asks a general veterinary question, provide a concise, expert answer.
5. Always keep responses professional, concise, and user-friendly with proper formatting.
6. Use emojis and bullet points for better readability.
7. If you don't have specific information, say so clearly and suggest alternatives.
CRITICAL NAMING RULES:
- ALWAYS keep company name "Apex Biotical Solutions" in English, even in Urdu responses
- ALWAYS keep product names in English (e.g., "EC-Immune", "Hydropex", "Heposel")
- ALWAYS keep technical terms in English when possible
- Only translate descriptive text, not proper nouns or brand names
Available Products Database: {products_df.to_dict('records') if products_df is not None else 'No products loaded'}
RESPONSE FORMAT:
- Keep responses concise and to the point
- Use emojis sparingly but effectively
- Avoid long titles or headers
- Focus on providing accurate, helpful information
- Preserve English company names and product names
"""
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=300
)
ai_response = response.choices[0].message.content.strip()
if reply_language == 'ur':
try:
# Get all product and category names for restoration
product_names = []
category_names = []
if products_df is not None and not products_df.empty:
product_names = [str(p.get('Product Name', '')) for p in products_df.to_dict('records') if p.get('Product Name')]
category_names = list(set([str(p.get('Category', '')) for p in products_df.to_dict('records') if p.get('Category')]))
# Add company names to preserve in English
company_names = ['Apex Biotical Solutions', 'Apex Biotical', 'Apex']
translated_response = GoogleTranslator(source='auto', target='ur').translate(ai_response)
# Restore English terms including company names
translated_response = restore_english_terms(translated_response, ai_response, product_names + company_names, category_names)
send_whatsjet_message(from_number, translated_response)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, ai_response)
else:
send_whatsjet_message(from_number, ai_response)
if context_manager:
context_manager.add_to_history(from_number, query, ai_response)
except Exception as e:
logger.error(f"[AI] Error handling general query: {e}")
send_whatsjet_message(from_number, "❌ AI Assistant encountered an error. Please try again or type 'main' to return to main menu.")
async def handle_contact_request(from_number: str):
"""Handle contact request"""
try:
message = (
"📞 *Contact Information*\n\n"
"Please provide your details:\n"
"• Name and location\n"
"• Phone number\n"
"• Specific inquiry\n\n"
"💬 *Example:* Dr. Ali - Multan - Need consultation for liver disease\n\n"
"💬 *Type 'main' to return to the main menu.*"
)
send_whatsjet_message(from_number, message)
context_manager.update_context(
from_number,
current_state='contact_request',
current_menu='contact_request',
current_menu_options=['Provide contact details']
)
except Exception as e:
logger.error(f"[Contact] Error handling contact request: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_contact_request_response(from_number: str, response: str):
"""Handle contact request response"""
try:
# Save contact inquiry
contact_data = {
'phone_number': from_number,
'inquiry': response,
'timestamp': datetime.now().isoformat()
}
# Ensure directory exists
os.makedirs('contacts', exist_ok=True)
with open('contacts/contact_inquiries.json', 'a', encoding='utf-8') as f:
f.write(json.dumps(contact_data, ensure_ascii=False) + '\n')
# Send inquiry to receiving number (admin)
receiving_number = "923102288328"
# Parse the response to separate name/location from details
response_lines = response.strip().split('\n')
if len(response_lines) >= 2:
name_location = response_lines[0].strip()
details = '\n'.join(response_lines[1:]).strip()
else:
# If only one line, assume it's all name/location
name_location = response.strip()
details = "No specific details provided"
inquiry_message = (
f"📞 *Follow Up Inquiry*\n\n"
f"Name and Location: {name_location}\n"
f"Phone: {from_number}\n"
f"Details: {details}"
)
send_whatsjet_message(receiving_number, inquiry_message)
# Send confirmation to user
send_whatsjet_message(from_number,
"✅ Thank you! Your inquiry has been received. Our team will contact you soon.\n\n"
"Type 'main' to return to the main menu.")
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
except Exception as e:
logger.error(f"[Contact] Error handling contact response: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_availability_inquiry(from_number: str, user_context: dict):
"""Handle availability inquiry"""
try:
current_product = user_context.get('current_product')
if current_product:
product_name = current_product.get('Product Name', 'N/A')
message = (
f"📦 *Availability Inquiry*\n\n"
f"Product: {product_name}\n\n"
"Please provide:\n"
"• Your name and location\n"
"• Required quantity\n"
"• Delivery preferences\n\n"
"💬 *Example:* Dr. Ali – Multan, 50 bottles\n\n"
"💬 *Type 'main' to return to the main menu.*"
)
send_whatsjet_message(from_number, message)
context_manager.update_context(
from_number,
current_state='availability_request',
current_menu='availability_request',
current_menu_options=['Provide availability details']
)
else:
send_whatsjet_message(from_number,
"❌ No product selected. Please search for a product first.")
except Exception as e:
logger.error(f"[Availability] Error handling availability inquiry: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_availability_request_response(from_number: str, response: str):
"""Handle availability request response"""
try:
# Save availability inquiry
availability_data = {
'phone_number': from_number,
'inquiry': response,
'timestamp': datetime.now().isoformat()
}
# Ensure directory exists
os.makedirs('contacts', exist_ok=True)
with open('contacts/availability_inquiries.json', 'a', encoding='utf-8') as f:
f.write(json.dumps(availability_data, ensure_ascii=False) + '\n')
# Send inquiry to receiving number (admin)
receiving_number = "923102288328"
current_product = context_manager.get_context(from_number).get('current_product', {})
product_name = current_product.get('Product Name', 'N/A') if current_product else 'N/A'
# Parse the response to extract name/location, quantity, and delivery preferences
response_lines = [line.strip() for line in response.strip().split('\n') if line.strip()]
name_location = "Not provided"
quantity = "Not specified"
delivery_preferences = "Not specified"
if len(response_lines) >= 1:
name_location = response_lines[0]
if len(response_lines) >= 2:
quantity = response_lines[1]
if len(response_lines) >= 3:
delivery_preferences = response_lines[2]
inquiry_message = (
f"📦 *Product Availability Inquiry*\n\n"
f"Product: {product_name}\n"
f"Name and Location: {name_location}\n"
f"Quantity: {quantity}\n"
f"Delivery Preferences: {delivery_preferences}\n"
f"Phone: {from_number}"
)
send_whatsjet_message(receiving_number, inquiry_message)
# Send confirmation to user
send_whatsjet_message(from_number,
"✅ Thank you! Your availability inquiry has been received. Our sales team will contact you soon.\n\n"
"Type 'main' to return to the main menu.")
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
except Exception as e:
logger.error(f"[Availability] Error handling availability response: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
def send_helpful_guidance(from_number: str, current_state: str):
try:
if current_state == 'all_products_menu':
send_whatsjet_message(from_number,
"📋 *Products Menu*\n\n"
"Select a product number (1-23) to view detailed information.\n"
"Type 'main' to return to the main menu.\n"
"You can also type a product name to search.")
elif current_state == 'product_inquiry':
send_whatsjet_message(from_number,
"📦 *Product Details*\n\n"
"Select an option:\n"
"1️⃣ Contact Sales\n"
"2️⃣ Check Availability\n"
"3️⃣ Back to Main Menu\n"
"Type 'main' to return to main menu.")
elif current_state == 'category_selection_menu':
send_whatsjet_message(from_number,
"📁 *Category Selection*\n\n"
"Select a category number to view products.\n"
"Type 'main' to return to main menu.")
elif current_state == 'category_products_menu':
send_whatsjet_message(from_number,
"📦 *Category Products*\n\n"
"Select a product number to view details.\n"
"Type 'main' to return to main menu.")
elif current_state == 'contact_request':
send_whatsjet_message(from_number,
"📞 *Contact Request*\n\n"
"Please provide your name, location, and quantity.\n"
"Format: 'Name - Location, Quantity'\n"
"Example: 'Dr. Ali - Multan, 50 bottles'")
elif current_state == 'availability_request':
send_whatsjet_message(from_number,
"📦 *Availability Inquiry*\n\n"
"Please provide your location and quantity.\n"
"Format: 'Location, Quantity'\n"
"Example: 'Multan, 50 bottles'")
else:
send_whatsjet_message(from_number,
"💬 *Main Menu*\n\n"
"Available options:\n"
"1️⃣ Search Veterinary Products\n"
"2️⃣ Browse Categories\n"
"3️⃣ Download Catalog\n\n"
"Select an option or ask about specific products.")
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
except Exception as e:
logger.error(f"Error sending helpful guidance: {e}")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
def is_greeting(text):
"""
Enhanced greeting detection using fuzzy matching and universal patterns.
Can detect variations like "Hy", "Hii", "Hallo", etc. without hardcoding.
"""
if not text:
return False
text_lower = text.lower().strip()
# Core greeting patterns that can be extended with variations
core_greetings = {
'hello': ['hello', 'hallo', 'helo', 'hlo', 'hallo', 'heloo', 'helloo'],
'hi': ['hi', 'hy', 'hii', 'hiii', 'hiiii', 'hie', 'hye', 'hai', 'hay'],
'hey': ['hey', 'heyy', 'heyyy', 'heey', 'heeyy', 'hay', 'hae'],
'good_morning': ['good morning', 'goodmorning', 'gm', 'gud morning', 'gudmorning'],
'good_afternoon': ['good afternoon', 'goodafternoon', 'ga', 'gud afternoon', 'gudafternoon'],
'good_evening': ['good evening', 'goodevening', 'ge', 'gud evening', 'gudevening'],
'good_night': ['good night', 'goodnight', 'gn', 'gud night', 'gudnight'],
'morning': ['morning', 'mornin', 'morn'],
'afternoon': ['afternoon', 'aftrnoon', 'aftr'],
'evening': ['evening', 'evnin', 'evn'],
'night': ['night', 'nite', 'nyt'],
'how_are_you': ['how are you', 'how r u', 'how are u', 'how r you', 'howru', 'howru'],
'whats_up': ['whats up', 'whats up', 'what is up', 'wassup', 'wassup', 'sup', 'sup'],
'assalamu_alaikum': ['assalamu alaikum', 'assalam alaikum', 'assalamu alaikom', 'assalam alaikom', 'asalamu alaikum', 'asalam alaikum', 'as-salamu alaykum', 'as salam alaykum', 'assalamu alaykum', 'assalam alaykum'],
'salam': ['salam', 'salaam', 'assalam', 'assalaam', 'salaam alaikum', 'salaam alaikom'],
'adaab': ['adaab', 'adaab arz hai', 'adaab arz', 'adaab arz karta hun'],
'namaste': ['namaste', 'namaskar', 'pranam', 'pranaam'],
'khuda_hafiz': ['khuda hafiz', 'allah hafiz', 'fi amanillah'],
'thank_you': ['thank you', 'thanks', 'shukriya', 'shukran', 'thnx', 'thx', 'tnx']
}
# Flatten all variations into a single list for fuzzy matching
all_greeting_variations = []
for variations in core_greetings.values():
all_greeting_variations.extend(variations)
# 1. Exact match check (fastest)
if text_lower in all_greeting_variations:
return True
# 2. Check for greeting patterns with common prefixes/suffixes
greeting_patterns = [
r'^(hi|hello|hey|hy|hii|hiii|hallo|helo|hlo|heyy|heyyy|heey|heeyy|hay|hae|hai|hye|hie)\s*$',
r'^(good\s+(morning|afternoon|evening|night)|gm|ga|ge|gn|gud\s+(morning|afternoon|evening|night))\s*$',
r'^(morning|afternoon|evening|night|mornin|morn|aftrnoon|aftr|evnin|evn|nite|nyt)\s*$',
r'^(how\s+(are\s+)?(you|u|r\s+u)|howru|howru)\s*$',
r'^(whats?\s+up|wassup|sup)\s*$',
r'^(assalamu?\s+alaik(um|om)|asalamu?\s+alaik(um|om)|salaam\s+alaik(um|om)|as-salamu?\s+alaykum|as\s+salam\s+alaykum)\s*$',
r'^(salam|salaam|assalam|assalaam)\s*$',
r'^(adaab(?:\s+arz(?:\s+(hai|karta\s+hun))?)?)\s*$',
r'^(namaste|namaskar|pranam|pranaam)\s*$',
r'^(khuda\s+hafiz|allah\s+hafiz|fi\s+amanillah)\s*$',
r'^(thank\s+you|thanks|shukriya|shukran|thnx|thx|tnx)\s*$'
]
for pattern in greeting_patterns:
if re.match(pattern, text_lower):
return True
# 3. Fuzzy matching for typos and variations (using rapidfuzz)
# Set a high threshold to avoid false positives
FUZZY_THRESHOLD = 90 # Increased threshold to 90% for better precision
# Check against all greeting variations
for greeting in all_greeting_variations:
# Use ratio for overall similarity
similarity = fuzz.ratio(text_lower, greeting)
if similarity >= FUZZY_THRESHOLD:
logger.info(f"Fuzzy greeting match: '{text_lower}' -> '{greeting}' (similarity: {similarity}%)")
return True
# 4. Check for greeting questions
greeting_questions = [
'how are you', 'how r u', 'how are u', 'how do you do', 'how\'s it going',
'how is it going', 'how\'s everything', 'how is everything',
'what\'s up', 'whats up', 'what is up', 'how\'s life', 'how is life',
'آپ کیسے ہیں', 'آپ کیسے ہو', 'کیسے ہیں', 'کیسے ہو', 'کیا حال ہے', 'کیسا ہے'
]
for question in greeting_questions:
if question in text_lower:
return True
# 5. Check for greeting with common modifiers
greeting_modifiers = ['there', 'everyone', 'all', 'guys', 'folks', 'people']
words = text_lower.split()
if len(words) >= 2:
first_word = words[0]
remaining_words = words[1:]
# Check if first word is a greeting and remaining words are modifiers
for greeting in all_greeting_variations:
if fuzz.ratio(first_word, greeting) >= FUZZY_THRESHOLD:
# Check if remaining words are all modifiers
if all(word in greeting_modifiers for word in remaining_words):
return True
# 6. Special case: Very short messages that are likely greetings
if len(text_lower) <= 4 and len(text_lower) >= 2:
# Check if it's a very short greeting-like word
short_greetings = ['hi', 'hy', 'hii', 'hey', 'heyy', 'hay', 'hae', 'hai', 'hye', 'hie']
for short_greeting in short_greetings:
if fuzz.ratio(text_lower, short_greeting) >= 85: # Lower threshold for short words
logger.info(f"Short greeting match: '{text_lower}' -> '{short_greeting}'")
return True
# 7. Additional safety check: Avoid false positives for common non-greeting words
# that might have high similarity to greetings
non_greeting_words = [
'help', 'here', 'her', 'his', 'him', 'hot', 'how', 'history', 'high',
'hint', 'hit', 'hill', 'hire', 'a', 'b', 'c', 'what', 'when', 'where', 'why'
]
# If the text is exactly one of these words, it's not a greeting
if text_lower in non_greeting_words:
return False
# 8. Check for product/inquiry keywords that indicate non-greeting intent
inquiry_keywords = [
'need', 'want', 'looking', 'find', 'show', 'tell', 'give', 'products',
'medicine', 'antibiotics', 'veterinary', 'animals', 'cattle', 'poultry',
'catalog', 'price', 'availability', 'consultation', 'appointment',
'main', 'menu', 'start', 'home', 'back', '1', '2', '3', '4', '5'
]
# If any inquiry keyword is present, it's likely not just a greeting
for keyword in inquiry_keywords:
if keyword in text_lower:
return False
return False
async def handle_ai_chat_mode(from_number: str, query: str, reply_language: str = 'en'):
"""
Handle AI chat mode - completely separate from menu system
Uses OpenAI to provide intelligent responses based on CSV data
"""
# Force Urdu replies for Option 4
reply_language = 'ur'
logger.info(f"[AI Chat] Forcing reply_language to Urdu for Option 4.")
try:
logger.info(f"[AI Chat] Processing query: '{query}' for {from_number} in {reply_language}")
# Check for navigation commands first
if query.lower().strip() in ['main', 'menu', 'start', 'home', 'back']:
logger.info(f"[AI Chat] Navigation command detected: '{query}' -> returning to main menu")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# Check for greetings - return to main menu
if is_greeting(query):
logger.info(f"[AI Chat] Greeting detected: '{query}' -> returning to main menu")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# Check if OpenAI is available
if not OPENAI_API_KEY:
if reply_language == 'ur':
send_whatsjet_message(from_number, "❌ AI Assistant requires OpenAI API. Please contact support.")
else:
send_whatsjet_message(from_number, "❌ AI Assistant requires OpenAI API. Please contact support.")
return
# Get all products data for context
all_products = []
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
# Create comprehensive context for AI
products_context = ""
if all_products:
products_context = "Available Veterinary Products:\n"
for i, product in enumerate(all_products[:50], 1): # Limit to first 50 products for context
product_name = product.get('Product Name', 'N/A')
category = product.get('Category', 'N/A')
composition = product.get('Composition', 'N/A')
target_species = product.get('Target Species', 'N/A')
products_context += f"{i}. {product_name} - {category}\n"
products_context += f" Composition: {composition}\n"
products_context += f" Target Species: {target_species}\n\n"
# Create AI prompt
if reply_language == 'ur':
prompt = f"""
آپ Apex Biotical کے Veterinary AI Assistant ہیں۔ آپ کو veterinary products اور treatments کے بارے میں معلومات فراہم کرنی ہیں۔
یوزر کا سوال: {query}
دستیاب veterinary products:
{products_context}
براہ کرم:
1. یوزر کے سوال کا جواب دیں
2. اگر یہ veterinary products سے متعلق ہے تو relevant products کی معلومات دیں
3. اگر یہ general veterinary advice ہے تو professional guidance دیں
4. اردو میں جواب دیں
5. جواب professional اور helpful ہو
جواب:
"""
else:
prompt = f"""
You are Apex Biotical's Veterinary AI Assistant. You provide information about veterinary products and treatments.
User Query: {query}
Available Veterinary Products:
{products_context}
Please:
1. Answer the user's question
2. If it's related to veterinary products, provide relevant product information
3. If it's general veterinary advice, provide professional guidance
4. Answer in English
5. Keep the response professional and helpful
Response:
"""
# Get AI response
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=500
)
ai_response = response.choices[0].message.content.strip()
# Add instructions for returning to main menu
if reply_language == 'ur':
ai_response += "\n\n💬 *Type 'main' to return to main menu*"
else:
ai_response += "\n\n💬 *Type 'main' to return to main menu*"
# Translate response if needed
if reply_language == 'ur':
try:
# Get all product and category names
product_names = [str(p.get('Product Name', '')) for p in all_products if p.get('Product Name')]
category_names = list(set([str(p.get('Category', '')) for p in all_products if p.get('Category')]))
# Add company names to preserve in English
company_names = ['Apex Biotical Solutions', 'Apex Biotical', 'Apex']
translated_response = GoogleTranslator(source='auto', target='ur').translate(ai_response)
# Restore English terms including company names
translated_response = restore_english_terms(translated_response, ai_response, product_names + company_names, category_names)
send_whatsjet_message(from_number, translated_response)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, ai_response)
else:
send_whatsjet_message(from_number, ai_response)
# Update context to AI chat mode
context_manager.update_context(
from_number,
current_state='ai_chat_mode',
current_menu='ai_chat_mode',
current_menu_options=['main'],
last_ai_query=query,
last_ai_response=ai_response
)
# Add to conversation history
context_manager.add_to_history(from_number, query, ai_response)
logger.info(f"[AI Chat] Response sent successfully to {from_number}")
except Exception as e:
logger.error(f"[AI Chat] Error processing query: {e}")
if reply_language == 'ur':
error_msg = "❌ AI Assistant میں error آ گیا ہے۔ براہ کرم دوبارہ کوشش کریں یا 'main' لکھ کر main menu پر واپس جائیں۔"
else:
error_msg = "❌ AI Assistant encountered an error. Please try again or type 'main' to return to main menu."
send_whatsjet_message(from_number, error_msg)
# Load products on startup
def load_products_data():
"""Load products data from CSV file"""
global products_df
try:
if os.path.exists(CSV_FILE):
products_df = pd.read_csv(CSV_FILE)
logger.info(f"✅ Loaded {len(products_df)} products from {CSV_FILE}")
else:
logger.warning(f"⚠️ CSV file {CSV_FILE} not found")
products_df = pd.DataFrame()
except Exception as e:
logger.error(f"❌ Error loading products data: {e}")
products_df = pd.DataFrame()
load_products_data()
# Add these functions after the existing imports and before the main functions
def get_product_image_path(product_name: str) -> str:
"""
Get the cPanel image URL for a product based on its name.
Only uses cPanel public URL format: https://amgocus.com/uploads/images/<normalized_name>.<ext>
Normalized: lowercase, remove spaces/underscores/dots, preserve dashes.
"""
try:
def normalize(name):
return re.sub(r'[\s_\.]', '', name).lower()
normalized_name = normalize(product_name)
logger.info(f"[Image] Normalized product name: '{product_name}' -> '{normalized_name}'")
image_extensions = ['.png', '.jpg', '.jpeg', '.webp']
base_url = "https://amgocus.com/uploads/images/"
# Check for all possible extensions
for ext in image_extensions:
image_url = f"{base_url}{normalized_name}{ext}"
logger.info(f"[Image] Checking cPanel image URL: {image_url}")
# For cPanel URLs, assume they are accessible if they start with http
if image_url.startswith('http'):
logger.info(f"[Image] Found cPanel image URL: {image_url}")
return image_url
# Fallback: try original name with spaces as %20
safe_name = product_name.strip().replace(' ', '%20')
for ext in image_extensions:
image_url = f"{base_url}{safe_name}{ext}"
logger.info(f"[Image] Checking fallback cPanel image URL: {image_url}")
if image_url.startswith('http'):
logger.info(f"[Image] Found cPanel image URL (fallback): {image_url}")
return image_url
logger.warning(f"[Image] No cPanel image found for product: {product_name}")
return None
except Exception as e:
logger.error(f"[Image] Error generating cPanel image URL for {product_name}: {e}")
return None
def get_product_image_media_type(image_path: str) -> str:
"""
Determine the media type based on file extension
"""
if not image_path:
return None
ext = os.path.splitext(image_path)[1].lower()
media_type_map = {
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png',
'.webp': 'image/webp',
'.gif': 'image/gif'
}
return media_type_map.get(ext, 'image/jpeg')
async def send_product_with_image(from_number: str, product: Dict[str, Any], user_context: Dict[str, Any]):
"""
Send product information with image if available
"""
try:
product_name = product.get('Product Name', 'Unknown Product')
# Generate product response
response = generate_veterinary_product_response(product, user_context)
# Try to get product image
image_path = get_product_image_path(product_name)
if image_path and os.path.exists(image_path):
# Send product info with image
media_type = get_product_image_media_type(image_path)
filename = f"{product_name.replace(' ', '_')}.jpg"
success = send_whatsjet_message(
from_number,
response,
media_type=media_type,
media_path=image_path,
filename=filename
)
if success:
logger.info(f"[Product] Successfully sent product with image: {product_name}")
else:
# Fallback to text-only if image send fails
logger.warning(f"[Product] Failed to send image, sending text only: {product_name}")
send_whatsjet_message(from_number, response)
else:
# Send text-only response
send_whatsjet_message(from_number, response)
logger.info(f"[Product] Sent product info without image: {product_name}")
except Exception as e:
logger.error(f"[Product] Error sending product with image: {e}")
# Fallback to text-only
response = generate_veterinary_product_response(product, user_context)
send_whatsjet_message(from_number, response)
async def send_enhanced_pdf(from_number: str, product: Dict[str, Any], pdf_content: bytes = None):
"""
Send PDF with enhanced formatting and proper WhatsApp document sharing
"""
try:
product_name = product.get('Product Name', 'Unknown_Product')
safe_name = re.sub(r'[^\w\s-]', '', product_name).replace(' ', '_')
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{safe_name}_Product_Info_{timestamp}.pdf"
# Generate PDF if not provided
if pdf_content is None:
pdf_content = generate_veterinary_pdf(product)
# Save PDF to uploads directory
uploads_dir = "uploads"
os.makedirs(uploads_dir, exist_ok=True)
pdf_path = os.path.join(uploads_dir, filename)
with open(pdf_path, 'wb') as f:
f.write(pdf_content)
# Send PDF as document via WhatsApp
success = send_whatsjet_message(
from_number,
f"📄 *{product_name} - Detailed Product Information*\n\n"
f"📎 Here's the complete product information in PDF format.\n"
f"📋 Includes: Composition, Dosage, Precautions, Storage\n\n"
f"💬 Type 'main' to return to main menu.",
media_type="application/pdf",
media_path=pdf_path,
filename=filename
)
if success:
logger.info(f"[PDF] Successfully sent PDF for product: {product_name}")
else:
# Fallback: Send download link
server_url = os.getenv("SERVER_URL", "https://your-huggingface-space-url.hf.space")
download_url = f"{server_url}/uploads/{filename}"
message = (
f"📄 *{product_name} - Product Information*\n\n"
f"📎 [Download Product PDF]({download_url})\n\n"
f"💬 *Click the link above to download the detailed product information*\n"
f"Type 'main' to return to main menu."
)
send_whatsjet_message(from_number, message)
logger.info(f"[PDF] Sent PDF download link for product: {product_name}")
except Exception as e:
logger.error(f"[PDF] Error sending enhanced PDF: {e}")
# Fallback to basic text response
response = generate_veterinary_product_response(product, {})
send_whatsjet_message(from_number, response)
# Enhanced product response function with image support
def generate_veterinary_product_response_with_media(product_info: Dict[str, Any], user_context: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate comprehensive veterinary product response with media information
Returns a dictionary with text response and media info
"""
def clean_text(text):
if pd.isna(text) or text is None:
return "Not specified"
return str(text).strip()
product_name = clean_text(product_info.get('Product Name', ''))
product_type = clean_text(product_info.get('Type', ''))
category = clean_text(product_info.get('Category', ''))
indications = clean_text(product_info.get('Indications', ''))
pdf_link = ""
try:
csv_data = pd.read_csv('Veterinary.csv')
product_row = csv_data[csv_data['Product Name'] == product_name]
if not product_row.empty:
brochure_link = product_row.iloc[0].get('Brochure (PDF)', '')
if pd.notna(brochure_link) and brochure_link.strip():
pdf_link = brochure_link.strip()
except Exception as e:
logger.warning(f"Error checking PDF link for {product_name}: {e}")
response_text = f"""🧪 *Name:* {product_name}\n📦 *Type:* {product_type}\n🏥 *Category:* {category}\n💊 *Used For:* {indications}"""
if pdf_link:
response_text += f"\n\n📄 Product Brochure Available\n🔗 {product_name} PDF:\n{pdf_link}"
response_text += f"""
\n💬 *Available Actions:*
1️⃣ Talk to Veterinary Consultant
2️⃣ Inquire About Availability
3️⃣ Back to Main Menu
\n💬 Select an option or ask about related products"""
image_path = get_product_image_path(product_name)
has_image = image_path is not None and os.path.exists(image_path)
return {
'text': response_text,
'has_image': has_image,
'image_path': image_path,
'product_name': product_name
}
def ensure_images_dir():
"""Ensure the images directory exists"""
images_dir = "static/images"
os.makedirs(images_dir, exist_ok=True)
logger.info(f"[Image] Ensured images directory exists: {images_dir}")
# New feature: Send product image with caption (product details)
async def send_product_image_with_caption(from_number: str, product: Dict[str, Any], user_context: Dict[str, Any]):
"""
Send product image (if available) with product details as caption in a single WhatsApp message.
Only uses cPanel images from https://amgocus.com/uploads/images/
If image is not available, send only the product details as text.
"""
ensure_images_dir()
product_name = product.get('Product Name', 'Unknown Product')
details = generate_veterinary_product_response(product, user_context)
logger.info(f"[Product] Processing cPanel image for product: {product_name}")
try:
# Get cPanel image URL for the product
image_url = get_product_image_path(product_name)
if image_url and image_url.startswith('http'):
logger.info(f"[Product] Found cPanel image URL: {image_url}")
# Test if the cPanel image URL is accessible
try:
logger.info(f"[Product] Testing cPanel image URL accessibility: {image_url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
test_response = requests.head(image_url, headers=headers, timeout=10, allow_redirects=True)
if test_response.status_code != 200:
logger.warning(f"[Product] cPanel image URL not accessible (status {test_response.status_code}): {image_url}")
raise Exception(f"cPanel image URL not accessible: {test_response.status_code}")
logger.info(f"[Product] cPanel image URL is accessible")
except Exception as e:
logger.warning(f"[Product] Failed to test cPanel image URL {image_url}: {e}")
image_url = None
# Send image with caption using the correct WhatsJet API
if image_url:
logger.info(f"[Product] Attempting to send cPanel image with caption for: {product_name}")
# Use the correct WhatsJet media endpoint with caption
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-media-message"
headers = {
"Authorization": f"Bearer {WHATSJET_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"phone_number": from_number,
"media_type": "image",
"media_url": image_url,
"caption": details,
"file_name": f"{product_name.replace(' ', '_')}.jpg"
}
try:
logger.info(f"[Product] Sending image with caption using WhatsJet API: {payload}")
response = httpx.post(url, json=payload, headers=headers, timeout=30)
logger.info(f"[Product] WhatsJet response status: {response.status_code}")
logger.info(f"[Product] WhatsJet response body: {response.text[:500]}...")
if response.status_code == 200:
logger.info(f"[Product] Successfully sent cPanel image with caption for product: {product_name}")
return
else:
logger.warning(f"[Product] Failed to send image with caption, trying separate messages: {product_name}")
# Fallback to separate messages
image_success = send_whatsjet_media_image_only(from_number, image_url, f"{product_name.replace(' ', '_')}.jpg")
if image_success:
await asyncio.sleep(1)
send_whatsjet_message(from_number, details)
return
else:
logger.warning(f"[Product] Failed to send cPanel image, sending text only: {product_name}")
except Exception as e:
logger.error(f"[Product] Error sending image with caption: {e}")
# Fallback to separate messages
image_success = send_whatsjet_media_image_only(from_number, image_url, f"{product_name.replace(' ', '_')}.jpg")
if image_success:
await asyncio.sleep(1)
send_whatsjet_message(from_number, details)
return
else:
logger.warning(f"[Product] Failed to send cPanel image, sending text only: {product_name}")
# No cPanel image available, send text only
logger.info(f"[Product] No cPanel image available, sending text only for: {product_name}")
send_whatsjet_message(from_number, details)
except Exception as e:
logger.error(f"[Product] Error sending product image with caption: {e}")
logger.info(f"[Product] Falling back to text-only message for: {product_name}")
send_whatsjet_message(from_number, details)
# Test endpoint for product image with caption
@app.get("/test-product-image-with-caption")
async def test_product_image_with_caption(phone: str):
"""Test endpoint for sending product image with caption"""
try:
if products_df is None or products_df.empty:
return {"error": "No products loaded"}
# Get first product for testing
product = products_df.iloc[0].to_dict()
user_context = {}
await send_product_image_with_caption(phone, product, user_context)
return {
"success": True,
"message": f"Test product image sent to {phone}",
"product": product.get('Product Name', 'Unknown')
}
except Exception as e:
logger.error(f"Error in test product image with caption: {e}")
return {"error": str(e)}
# Test endpoint for image sending
@app.get("/test-image-sending")
async def test_image_sending(phone: str, image_url: str = "https://amgocus.com/uploads/images/respiraaidplus.png"):
"""Test endpoint for sending images via WhatsApp"""
try:
filename = "test_image.jpg"
success = send_whatsjet_message(
phone,
"🖼️ *Test Image*\n\nThis is a test image sent via WhatsApp API.",
media_type="image/jpeg",
media_path=image_url,
filename=filename
)
if success:
return {
"success": True,
"message": f"Test image sent successfully to {phone}",
"image_url": image_url
}
else:
return {
"success": False,
"message": f"Failed to send test image to {phone}",
"image_url": image_url
}
except Exception as e:
logger.error(f"Error in test image sending: {e}")
return {"error": str(e)}
# Debug endpoint for WhatsJet
@app.get("/debug-whatsjet")
async def debug_whatsjet():
"""Debug endpoint to check WhatsJet configuration"""
try:
config = {
"api_url": WHATSJET_API_URL,
"vendor_uid": WHATSJET_VENDOR_UID,
"api_token": "***" if WHATSJET_API_TOKEN else None,
"server_url": SERVER_URL,
"openai_key": "***" if OPENAI_API_KEY else None
}
return {
"status": "success",
"config": config,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}
# Test endpoint for WhatsJet payloads
@app.get("/test-whatsjet-payloads")
async def test_whatsjet_payloads(phone: str):
"""Test endpoint to check WhatsJet payloads"""
try:
# Test basic message sending
test_message = "🧪 *WhatsJet Test*\n\nThis is a test message to verify WhatsJet integration."
success = send_whatsjet_message(phone, test_message)
return {
"status": "success" if success else "failed",
"message": f"WhatsJet test message sent to {phone}",
"success": success,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}
# Test endpoint for cPanel image access
@app.get("/test-cpanel-image-access")
async def test_cpanel_image_access():
"""
Test endpoint to check if cPanel image URLs are now accessible with browser-like headers.
"""
try:
image_url = "https://amgocus.com/uploads/images/Respira%20Aid%20Plus.jpg"
# Test with browser-like headers
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
logger.info(f"[Test] Testing cPanel image URL with browser headers: {image_url}")
response = requests.get(image_url, headers=headers, timeout=10, stream=True, allow_redirects=True)
result = {
"image_url": image_url,
"status_code": response.status_code,
"headers": dict(response.headers),
"accessible": response.status_code == 200,
"timestamp": datetime.now().isoformat()
}
if response.status_code == 200:
logger.info(f"[Test] ✅ cPanel image URL is now accessible!")
else:
logger.warning(f"[Test] ❌ cPanel image URL still not accessible (status {response.status_code})")
return result
except Exception as e:
logger.error(f"[Test] Error testing cPanel image access: {e}")
return {
"error": str(e),
"image_url": image_url,
"timestamp": datetime.now().isoformat()
}
def format_number_with_emoji(number: int) -> str:
"""Format number with emoji"""
emoji_map = {
1: "1️⃣", 2: "2️⃣", 3: "3️⃣", 4: "4️⃣", 5: "5️⃣",
6: "6️⃣", 7: "7️⃣", 8: "8️⃣", 9: "9️⃣", 10: "🔟",
11: "1️⃣1️⃣", 12: "1️⃣2️⃣", 13: "1️⃣3️⃣", 14: "1️⃣4️⃣", 15: "1️⃣5️⃣",
16: "1️⃣6️⃣", 17: "1️⃣7️⃣", 18: "1️⃣8️⃣", 19: "1️⃣9️⃣", 20: "2️⃣0️⃣",
21: "2️⃣1️⃣", 22: "2️⃣2️⃣", 23: "2️⃣3️⃣"
}
return emoji_map.get(number, f"{number}.")
async def display_all_products(from_number: str):
"""Display all products in multiple messages and update menu context"""
try:
user_context = context_manager.get_context(from_number)
current_state = user_context.get('current_state', 'main_menu')
logger.info(f"[Display] display_all_products called for {from_number} in state: {current_state}")
if current_state == 'all_products_menu':
logger.warning(f"[Display] Already in all_products_menu state for {from_number}, skipping display")
return
if products_df is None or products_df.empty:
send_whatsjet_message(from_number, "❌ No products available at the moment.")
return
# Set state to all_products_menu and store menu context
products = products_df.to_dict('records')
context_manager.update_context(
from_number,
current_state='all_products_menu',
current_menu='all_products_menu',
current_menu_options=[p.get('Product Name', 'Unknown') for p in products],
available_products=products
)
logger.info(f"[Display] Set state to all_products_menu for {from_number}")
# Send products in chunks
chunk_size = 5
for i in range(0, len(products), chunk_size):
chunk = products[i:i + chunk_size]
message = f"📋 *Products List ({i+1}-{min(i+chunk_size, len(products))} of {len(products)})*\n\n"
for j, product in enumerate(chunk, i+1):
message += f"{format_number_with_emoji(j)} {product.get('Product Name', 'Unknown')}\n"
if product.get('Category'):
message += f" Category: {product.get('Category')}\n"
message += "\n"
send_whatsjet_message(from_number, message)
send_whatsjet_message(from_number,
"💬 Type a product name to get detailed information, or type 'main' to return to main menu.")
except Exception as e:
logger.error(f"[Display] Error displaying products: {e}")
send_whatsjet_message(from_number, "❌ Error displaying products. Please try again.")
def get_all_categories():
"""Return a list of all unique categories from the products DataFrame"""
if products_df is not None and not products_df.empty:
return list(products_df['Category'].unique())
return []
def get_products_by_category(category: str):
"""Get products by category"""
if products_df is None or products_df.empty:
return []
category_products = products_df[products_df['Category'] == category]
return category_products.to_dict('records')
async def handle_category_selection(selection: str, from_number: str):
"""Handle category selection"""
try:
user_context = context_manager.get_context(from_number)
available_categories = user_context.get('available_categories', [])
if selection.isdigit() and 1 <= int(selection) <= len(available_categories):
selected_category = available_categories[int(selection) - 1]
products = get_products_by_category(selected_category)
if products:
# Update context with category products
context_manager.update_context(
from_number,
current_category=selected_category,
current_state='category_products_menu',
current_menu='category_products_menu',
current_menu_options=[p.get('Product Name', 'Unknown') for p in products],
available_products=products
)
# Send category products
message = f"📦 *Products in {selected_category}*\n\n"
for i, product in enumerate(products, 1):
message += f"{format_number_with_emoji(i)} {product.get('Product Name', 'Unknown')}\n"
if product.get('Target Species'):
message += f" Target: {product.get('Target Species')}\n"
message += "\n"
message += "💬 Select a product number or type 'main' to return to main menu."
send_whatsjet_message(from_number, message)
else:
send_whatsjet_message(from_number, f"❌ No products found in {selected_category} category.")
else:
send_whatsjet_message(from_number, "❌ Invalid selection. Please choose a valid category number.")
except Exception as e:
logger.error(f"[Category] Error handling category selection: {e}")
send_helpful_guidance(from_number, 'category_selection_menu')
def get_menu_validation_message(current_state: str, user_context: dict) -> str:
"""Get appropriate validation message for current menu state"""
if current_state == 'main_menu':
return (
"❌ *Invalid Selection*\n\n"
"Please choose from the main menu:\n"
"1️⃣ Search Veterinary Products\n"
"2️⃣ Browse Categories\n"
"3️⃣ Download Catalog\n"
"4️⃣ Chat with Veterinary AI Assistant\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to refresh the menu"
)
elif current_state == 'all_products_menu':
if products_df is not None and not products_df.empty:
total_products = len(products_df)
return (
f"❌ *Invalid Product Selection*\n\n"
f"Please choose a product number between 1 and {total_products}.\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to return to main menu"
)
else:
return "❌ No products available. Type 'main' to return to main menu."
elif current_state == 'category_products_menu':
available_products = user_context.get('available_products', [])
if available_products:
return (
f"❌ *Invalid Product Selection*\n\n"
f"Please choose a product number between 1 and {len(available_products)}.\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to return to main menu"
)
else:
return "❌ No products available in this category. Type 'main' to return to main menu."
elif current_state == 'category_selection_menu':
available_categories = user_context.get('available_categories', [])
if available_categories:
return (
f"❌ *Invalid Category Selection*\n\n"
f"Please choose a category number between 1 and {len(available_categories)}.\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to return to main menu"
)
else:
return "❌ No categories available. Type 'main' to return to main menu."
elif current_state == 'product_inquiry':
return (
"❌ *Invalid Selection*\n\n"
"Please choose an option:\n"
"1️⃣ Talk to Veterinary Consultant\n"
"2️⃣ Inquire About Availability\n"
"3️⃣ Back to Main Menu\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to return to main menu"
)
elif current_state == 'intelligent_products_menu':
return (
"❌ *Invalid Selection*\n\n"
"Please choose a product number between 1 and {len(available_products)}.\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to return to main menu"
)
else:
return (
"❌ *Invalid Selection*\n\n"
"Please choose a valid option or type 'main' to return to main menu.\n\n"
"💬 *You can also:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')"
)
def is_valid_menu_selection(selection: str, current_state: str, user_context: dict) -> bool:
"""Check if selection is valid for current menu state"""
is_valid, _ = validate_menu_selection(selection, current_state, user_context)
return is_valid
def generate_veterinary_welcome_message(phone_number=None, user_context=None):
"""Generate veterinary welcome message"""
return (
"🏥 Welcome to Apex Biotical Solutions Veterinary Virtual Assistant\n\n"
"How can I help you today?\n\n"
"📋 Main Menu:\n"
"1️⃣ Complete Products List\n"
"2️⃣ Browse Categories\n"
"3️⃣ Download Catalog\n"
"4️⃣ Chat with Veterinary AI Assistant\n\n"
"💬 Quick Actions:\n"
"* Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"* Ask about symptoms (e.g., 'respiratory problems', 'liver support')\n"
"* Search by category (e.g., 'antibiotics', 'vitamins')\n\n"
"🎤 Voice messages are supported!\n"
"You can speak product names, menu numbers, or ask questions."
)
async def handle_veterinary_product_followup(selection: str, from_number: str) -> None:
"""
Handle product follow-up selections with enhanced veterinary domain support
"""
try:
user_context = context_manager.get_context(from_number)
current_product = user_context.get('current_product')
if not current_product:
send_whatsjet_message(from_number, "❌ No product selected. Please search for a product first.")
return
if selection == '1':
# Talk to Veterinary Consultant
product_name = current_product.get('Product Name', 'the selected product')
consultant_msg = (
f"📞 Contact Veterinary Consultant\n\n"
f"Product: {product_name}\n\n"
"Please provide your details:\n"
"* Name and location\n"
"* Specific inquiry\n\n"
"💬 Example: Dr. Ali - Multan - Need consultation for respiratory problems\n\n"
"Type main at any time to go to main menu."
)
send_whatsjet_message(from_number, consultant_msg)
context_manager.update_context(
from_number,
current_state='contact_request',
current_menu='contact_request',
current_menu_options=['Provide contact details']
)
elif selection == '2':
# Inquire about Product Availability
await handle_availability_inquiry(from_number, user_context)
elif selection == '3':
welcome_msg = generate_veterinary_welcome_message(from_number, user_context)
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
else:
send_whatsjet_message(from_number, "❌ Invalid selection. Please choose 1, 2, or 3.")
return
except Exception as e:
logger.error(f"Error in product follow-up: {e}")
user_context = context_manager.get_context(from_number)
welcome_msg = generate_veterinary_welcome_message(from_number, user_context)
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
# Add or update the following functions in app.py:
# --- Restore handle_voice_message_complete ---
async def handle_voice_message_complete(from_number: str, msg: dict):
"""Complete voice message processing with OpenAI transcription - treats voice exactly like text"""
try:
logger.info(f"[Voice] Processing voice message from {from_number}")
logger.info(f"[Voice] Message structure: {msg}")
# Check if OpenAI is available
if not OPENAI_API_KEY:
send_whatsjet_message(from_number,
"🎤 Voice messages require OpenAI API. Please send a text message or type 'main' to see the menu.")
return
# Extract media URL from different possible locations
media_url = None
logger.info(f"[Voice] Checking media URL locations...")
if msg.get('media', {}).get('link'):
media_url = msg.get('media', {}).get('link')
logger.info(f"[Voice] Found media URL in media.link: {media_url}")
elif msg.get('media', {}).get('url'):
media_url = msg.get('media', {}).get('url')
logger.info(f"[Voice] Found media URL in media.url: {media_url}")
elif msg.get('url'):
media_url = msg.get('url')
logger.info(f"[Voice] Found media URL in url: {media_url}")
elif msg.get('audio', {}).get('url'):
media_url = msg.get('audio', {}).get('url')
logger.info(f"[Voice] Found media URL in audio.url: {media_url}")
else:
logger.error(f"[Voice] No media URL found in message structure")
logger.error(f"[Voice] Available fields: {list(msg.keys())}")
if 'media' in msg:
logger.error(f"[Voice] Media fields: {list(msg['media'].keys())}")
logger.info(f"[Voice] Final extracted media URL: {media_url}")
if not media_url:
send_whatsjet_message(from_number, "❌ Could not process voice message. Please try again.")
return
# Generate unique filename
filename = f"voice_{from_number}_{int(time.time())}.ogg"
# Download voice file
file_path = await download_voice_file(media_url, filename)
if not file_path:
send_whatsjet_message(from_number, "❌ Failed to download voice message. Please try again.")
return
# Transcribe with OpenAI
transcribed_text = await transcribe_voice_with_openai(file_path)
# Clean up voice file immediately
try:
os.remove(file_path)
except:
pass
# Handle empty, failed, or unclear transcription
if not transcribed_text or transcribed_text.strip() == "" or transcribed_text.lower() == "unclear audio":
logger.warning(f"[Voice] Empty or unclear transcription for {from_number}: '{transcribed_text}'")
send_whatsjet_message(from_number,
"🎤 *Voice Message Issue*\n\n"
"I couldn't understand your voice message clearly. This can happen due to:\n"
"• Very short voice note\n"
"• Background noise\n"
"• Microphone too far away\n"
"• Audio quality issues\n"
"• Speaking too fast\n\n"
"💡 *Tips for better voice notes:*\n"
"• Speak clearly and slowly\n"
"• Keep phone close to mouth\n"
"• Record in quiet environment\n"
"• Make voice note at least 2-3 seconds\n"
"• Speak in English or Urdu only\n\n"
"💬 *You can also:*\n"
"• Send a text message\n"
"• Type 'main' to see menu options\n"
"• Try voice note again")
return
# Process transcribed text with full intelligence
logger.info(f"[Voice] Transcribed: {transcribed_text}")
# Apply transcription error corrections
corrected_text = process_voice_input(transcribed_text)
if corrected_text != transcribed_text:
logger.info(f"[Voice] Applied corrections: '{transcribed_text}' -> '{corrected_text}'")
transcribed_text = corrected_text
# Detect language of transcribed text - STRICTLY ENGLISH OR URDU ONLY
detected_lang = 'en' # Default to English
try:
detected_lang = detect(transcribed_text)
logger.info(f"[Voice] Raw detected language: {detected_lang}")
# STRICTLY ENGLISH OR URDU ONLY - NO OTHER LANGUAGES
# Only allow English and Urdu, reject everything else
if detected_lang in ['en', 'ur']:
reply_language = detected_lang
else:
# Force any other language to English
reply_language = 'en'
logger.warning(f"[Voice] Detected language '{detected_lang}' is not English or Urdu, forcing to English")
# Check if text contains Urdu/Arabic characters or Islamic greetings
urdu_arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF\uFB50-\uFDFF\uFE70-\uFEFF]')
islamic_greetings = ['assalamu', 'assalam', 'salam', 'salaam', 'adaab', 'namaste', 'khuda', 'allah']
has_urdu_chars = bool(urdu_arabic_pattern.search(transcribed_text))
has_islamic_greeting = any(greeting in transcribed_text.lower() for greeting in islamic_greetings)
if has_urdu_chars or has_islamic_greeting:
detected_lang = 'ur'
reply_language = 'ur'
logger.info(f"[Voice] Overriding language detection to Urdu due to Arabic/Urdu characters or Islamic greeting")
logger.info(f"[Voice] Final language set to: {reply_language}")
except Exception as e:
logger.warning(f"[Voice] Language detection failed: {e}, defaulting to English")
reply_language = 'en'
# For Urdu voice notes, translate to English for processing
processing_text = transcribed_text
if reply_language == 'ur' and detected_lang == 'ur':
try:
logger.info(f"[Voice] Translating Urdu voice note to English for processing")
translated_text = GoogleTranslator(source='ur', target='en').translate(transcribed_text)
processing_text = translated_text
logger.info(f"[Voice] Translated to English: {translated_text}")
except Exception as e:
logger.error(f"[Voice] Translation failed: {e}")
# If translation fails, use original text
processing_text = transcribed_text
# Determine reply language - always respond in English or Urdu
if detected_lang == 'ur':
reply_language = 'ur' # Urdu voice notes get Urdu replies
else:
reply_language = 'en' # All other languages get English replies
logger.info(f"[Voice] Processing text: {processing_text}")
logger.info(f"[Voice] Reply language set to: {reply_language}")
# Check if this is a greeting in voice note (check both original and translated)
if is_greeting(transcribed_text) or is_greeting(processing_text):
logger.info(f"[Voice] Greeting detected in voice note: {transcribed_text}")
# Check if user is currently in AI chat mode - if so, don't trigger menu mode
user_context = context_manager.get_context(from_number)
current_state = user_context.get('current_state', 'main_menu')
if current_state == 'ai_chat_mode':
logger.info(f"[Voice] User is in AI chat mode, treating greeting as AI query instead of menu trigger")
# Treat greeting as a general query in AI chat mode
await handle_general_query_with_ai(from_number, processing_text, user_context, reply_language)
return
else:
# Only trigger menu mode if not in AI chat mode
welcome_msg = generate_veterinary_welcome_message(from_number, user_context)
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(from_number, current_state='main_menu', current_menu='main_menu', current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()))
return
# Process the translated text using the same strict state-based logic as text messages
# This ensures voice messages follow the same menu and state rules as text messages
await process_incoming_message(from_number, {
'body': processing_text, # Use translated text for processing
'type': 'text',
'reply_language': reply_language,
'original_transcription': transcribed_text # Keep original for context
})
except Exception as e:
logger.error(f"[Voice] Error processing voice message: {e}")
logger.error(f"[Voice] Full error details: {str(e)}")
import traceback
logger.error(f"[Voice] Traceback: {traceback.format_exc()}")
send_whatsjet_message(from_number,
"❌ Error processing voice message. Please try a text message.")
# Test endpoint for WhatsJet media format debugging
@app.get("/test-whatsjet-media-formats")
async def test_whatsjet_media_formats(phone: str):
"""Test endpoint to debug WhatsJet media message formats"""
try:
test_image_url = "https://amgocus.com/uploads/images/respiraaidplus.png"
test_message = "🧪 *Media Format Test*\n\nTesting different WhatsJet media payload formats."
# Test different payload formats
formats = [
{
"name": "Format 1 - caption",
"payload": {
"phone_number": phone,
"caption": test_message,
"media_type": "image/png",
"media_url": test_image_url,
"media_filename": "test.png"
}
},
{
"name": "Format 2 - message_body",
"payload": {
"phone_number": phone,
"message_body": test_message,
"media_type": "image/png",
"media_url": test_image_url,
"media_filename": "test.png"
}
},
{
"name": "Format 3 - simplified",
"payload": {
"phone_number": phone,
"message_body": test_message,
"media_type": "image/png",
"media_url": test_image_url
}
},
{
"name": "Format 4 - different fields",
"payload": {
"phone_number": phone,
"caption": test_message,
"type": "image/png",
"url": test_image_url
}
}
]
results = []
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-message?token={WHATSJET_API_TOKEN}"
for format_info in formats:
try:
logger.info(f"[Test] Trying {format_info['name']}: {format_info['payload']}")
response = httpx.post(url, json=format_info['payload'], timeout=15)
result = {
"format": format_info['name'],
"status_code": response.status_code,
"success": response.status_code == 200,
"response_text": response.text[:500] if response.text else "No response text"
}
results.append(result)
if response.status_code == 200:
logger.info(f"[Test] ✅ {format_info['name']} succeeded!")
else:
logger.warning(f"[Test] ❌ {format_info['name']} failed: {response.status_code}")
except Exception as e:
result = {
"format": format_info['name'],
"status_code": "Exception",
"success": False,
"response_text": str(e)
}
results.append(result)
logger.error(f"[Test] Exception with {format_info['name']}: {e}")
return {
"status": "completed",
"phone": phone,
"image_url": test_image_url,
"results": results,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Error in test WhatsJet media formats: {e}")
return {"error": str(e)}
# Test endpoint for product image URL accessibility
@app.get("/test-product-image-url")
async def test_product_image_url(product_name: str = "Respira Aid Plus"):
"""Test endpoint to check if product image URL is accessible"""
try:
image_path = get_product_image_path(product_name)
if not image_path:
return {
"product_name": product_name,
"image_path": None,
"accessible": False,
"error": "No image path found"
}
# Test if the URL is accessible
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive'
}
response = requests.get(image_path, headers=headers, timeout=10, stream=True)
result = {
"product_name": product_name,
"image_path": image_path,
"status_code": response.status_code,
"accessible": response.status_code == 200,
"content_type": response.headers.get('content-type', 'unknown'),
"content_length": response.headers.get('content-length', 'unknown'),
"headers": dict(response.headers)
}
if response.status_code == 200:
logger.info(f"[Test] ✅ Product image URL is accessible: {image_path}")
else:
logger.warning(f"[Test] ❌ Product image URL not accessible: {image_path} (status: {response.status_code})")
return result
except Exception as e:
return {
"product_name": product_name,
"image_path": image_path,
"accessible": False,
"error": str(e)
}
except Exception as e:
logger.error(f"Error testing product image URL: {e}")
return {"error": str(e)}
# Test endpoint for send_product_image_with_caption function
@app.get("/test-send-product-image")
async def test_send_product_image(phone: str, product_name: str = "Bromacid"):
"""
Test endpoint to test the send_product_image_with_caption function with a specific product.
"""
try:
# Load product from CSV
df = pd.read_csv('Veterinary.csv')
row = df[df['Product Name'].str.lower() == product_name.lower()]
if row.empty:
return {"error": f"Product '{product_name}' not found in CSV"}
product = row.iloc[0].to_dict()
user_context = context_manager.get_context(phone)
logger.info(f"[Test] Testing send_product_image_with_caption for product: {product_name}")
await send_product_image_with_caption(phone, product, user_context)
return {
"status": "sent",
"phone": phone,
"product": product_name,
"message": f"Product image with caption sent for {product_name}"
}
except Exception as e:
logger.error(f"[Test] Error testing send_product_image_with_caption: {e}")
return {"error": str(e)}
async def handle_intelligent_product_inquiry(from_number: str, query: str, user_context: dict, reply_language: str = 'en'):
"""Handle product inquiry with OpenAI intelligence and media support, matching WhatsApp screenshot logic"""
try:
products = get_veterinary_product_matches(query)
if products:
if len(products) > 1:
message = f"Certainly, here are the relevant products for your query:\n\n"
for i, product in enumerate(products, 1):
product_name = product.get('Product Name', 'Unknown')
category = product.get('Category', '')
short_desc = product.get('Type', '') or product.get('Indications', '')
message += f"{i}. {product_name}"
if category:
message += f" - {category}"
if short_desc:
message += f" / {short_desc}"
message += "\n"
message += (f"\nTo view detailed information about any product, reply with its number (1-{len(products)})\n"
"Type 'main' to return to the main menu")
send_whatsjet_message(from_number, message)
if context_manager:
context_manager.update_context(
from_number,
current_state='intelligent_products_menu',
current_menu='intelligent_products_menu',
current_menu_options=[str(i) for i in range(1, len(products)+1)],
available_products=products
)
return
else:
selected_product = products[0]
if context_manager:
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
# The actual sending of product details should be handled by the caller
return selected_product
else:
# Simple one-liner for wrong queries
send_whatsjet_message(from_number, "❌ Please correct your question or type 'main' to go to main menu.")
except Exception as e:
logger.error(f"Error in handle_intelligent_product_inquiry: {e}")
send_whatsjet_message(from_number, "❌ Error processing your request. Type 'main' to return to the main menu.")
async def handle_contact_request(from_number: str):
"""Handle contact request"""
try:
message = (
"📞 *Contact Information*\n\n"
"Please provide your details:\n"
"• Name and location\n"
"• Phone number\n"
"• Specific inquiry\n\n"
"💬 *Example:* Dr. Ali - Multan - Need consultation for liver disease\n\n"
"💬 *Type 'main' to return to the main menu.*"
)
send_whatsjet_message(from_number, message)
context_manager.update_context(
from_number,
current_state='contact_request',
current_menu='contact_request',
current_menu_options=['Provide contact details']
)
except Exception as e:
logger.error(f"[Contact] Error handling contact request: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
# Helper for restoring English terms in translations
def restore_english_terms(translated_text, original_text, product_names, category_names):
"""
Restore English terms (company names, product names, technical terms) in translated text.
This ensures that proper nouns and brand names remain in English even in Urdu responses.
"""
# Add common technical terms that should remain in English
technical_terms = [
'EC-Immune', 'Hydropex', 'Heposel', 'Respira Aid Plus', 'Bromacid',
'mode of action', 'dosage', 'administration', 'composition',
'veterinary', 'pharmaceutical', 'supplement', 'antibiotic'
]
# Combine all terms that should remain in English
all_english_terms = product_names + category_names + technical_terms
# Process each term
for term in all_english_terms:
if term and term.strip():
# Handle case variations
term_lower = term.lower()
translated_lower = translated_text.lower()
# If the term exists in translated text but not in original, restore it
if term_lower in translated_lower:
# Find the actual case in the translated text and replace with original
import re
pattern = re.compile(re.escape(term), re.IGNORECASE)
translated_text = pattern.sub(term, translated_text)
return translated_text
if __name__ == "__main__":
# Load products data on startup
load_products_data()
# Launch FastAPI app
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|