chatbot / app.py
DreamStream-1's picture
Update app.py
2fce508 verified
raw
history blame
224 kB
#!/usr/bin/env python3
"""
Apex Biotical Veterinary WhatsApp Assistant - Premium Edition
The most effective and accurate veterinary Assistant in the market
"""
import os
import pandas as pd
import requests
import json
from fastapi import FastAPI, Request, Response, Form, HTTPException, File, UploadFile
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse
import time
import re
from typing import List, Dict, Any, Optional, Tuple
import openai
from dotenv import load_dotenv
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import uvicorn
from datetime import datetime, timedelta
from rapidfuzz import process, fuzz
from deep_translator import GoogleTranslator
import numpy as np
import logging
import base64
import tempfile
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter, A4
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_JUSTIFY
import io
import pathlib
from collections import defaultdict, Counter
import hashlib
import aiofiles
import asyncio
from difflib import SequenceMatcher
import httpx
import langdetect
from langdetect import detect
import threading
import shutil
# Configure advanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('veterinary_bot.log', encoding='utf-8'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize FastAPI app
app = FastAPI(title="Apex Biotical Veterinary Assistant", version="2.0.0")
# Ensure static and uploads directories exist before mounting
os.makedirs('static', exist_ok=True)
os.makedirs('uploads', exist_ok=True)
# Mount static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/uploads", StaticFiles(directory="uploads"), name="uploads")
templates = Jinja2Templates(directory="templates")
# Global variables with enhanced data structures
CSV_FILE = "Veterinary.csv"
products_df = None
user_contexts = {}
last_products = {}
conversation_history = defaultdict(list)
product_analytics = defaultdict(int)
session_data = {}
# Environment variables
WHATSJET_API_URL = os.getenv("WHATSJET_API_URL")
WHATSJET_VENDOR_UID = os.getenv("WHATSJET_VENDOR_UID")
WHATSJET_API_TOKEN = os.getenv("WHATSJET_API_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SERVER_URL = os.getenv("SERVER_URL", "https://your-huggingface-space-url.hf.space")
# Initialize OpenAI client
if OPENAI_API_KEY:
openai.api_key = OPENAI_API_KEY
logger.info("✅ OpenAI client initialized successfully")
else:
logger.warning("⚠️ OpenAI API key not found - voice transcription will be disabled")
# Veterinary domain-specific constants
VETERINARY_CATEGORIES = {
'antibiotic': ['Antibiotic / Quinolone', 'Antibiotic / Respiratory Infections', 'Veterinary Injectable Solution (Antibiotic)'],
'respiratory': ['Respiratory Support', 'Respiratory / Mucolytic', 'Respiratory Support and Hygiene Enhancer'],
'liver': ['Liver & Kidney Support', 'Liver Tonic and Hepatoprotective Supplement'],
'vitamin': ['Multivitamin Supplement', 'Multivitamin Supplement for veterinary use', 'Vitamin and Amino Acid Supplement (Injectable Solution)'],
'supplement': ['Nutritional Supplement / Mycotoxins', 'Immunity Enhancer and Antioxidant Supplement'],
'mycotoxin': ['Mycotoxin Binder'],
'heat_stress': ['Heat Stress Support'],
'anticoccidial': ['Anticoccidial / Sulfonamide'],
'phytogenic': ['Phytogenic / Antibiotic Alternative']
}
VETERINARY_SYMPTOMS = {
'respiratory': ['cough', 'breathing', 'respiratory', 'bronchitis', 'pneumonia', 'crd', 'coryza', 'flu'],
'liver': ['liver', 'hepatitis', 'jaundice', 'ascites', 'fatty liver'],
'diarrhea': ['diarrhea', 'diarrhoea', 'loose stool', 'gastroenteritis'],
'stress': ['stress', 'heat stress', 'transport', 'vaccination'],
'infection': ['infection', 'bacterial', 'viral', 'fungal', 'septicemia'],
'deficiency': ['vitamin deficiency', 'mineral deficiency', 'anemia'],
'mycotoxin': ['mycotoxin', 'mold', 'fungal toxin', 'aflatoxin']
}
VETERINARY_SPECIES = {
'poultry': ['chicken', 'broiler', 'layer', 'turkey', 'duck', 'quail', 'poultry'],
'livestock': ['cattle', 'cow', 'buffalo', 'sheep', 'goat', 'livestock'],
'pet': ['dog', 'cat', 'pet', 'companion animal']
}
# Menu Configuration - Define each menu with its valid options
MENU_CONFIG = {
'main_menu': {
'name': 'Main Menu',
'valid_options': ['1', '2', '3', '4'],
'option_descriptions': {
'1': 'Search Products',
'2': 'Browse Categories',
'3': 'Download Catalog',
'4': 'Chat with Veterinary AI Assistant'
}
},
'category_selection_menu': {
'name': 'Category Selection Menu',
'valid_options': [], # Will be populated dynamically based on available categories
'option_descriptions': {}
},
'category_products_menu': {
'name': 'Category Products Menu',
'valid_options': [], # Will be populated dynamically based on available products
'option_descriptions': {}
},
'all_products_menu': {
'name': 'All Products Menu',
'valid_options': [], # Will be populated dynamically based on all products
'option_descriptions': {}
},
'intelligent_products_menu': {
'name': 'Intelligent Products Menu',
'valid_options': [], # Will be populated dynamically based on available products
'option_descriptions': {}
},
'product_inquiry': {
'name': 'Product Inquiry Menu',
'valid_options': ['1', '2', '3'],
'option_descriptions': {
'1': 'Talk to Veterinary Consultant',
'2': 'Inquire about Product Availability',
'3': 'Back to Main Menu'
}
},
'ai_chat': {
'name': 'AI Chat Mode',
'valid_options': ['main'],
'option_descriptions': {
'main': 'Return to Main Menu'
}
}
}
def validate_menu_selection(selection: str, current_state: str, user_context: dict) -> tuple[bool, str]:
"""
Validate if a selection is valid for the current menu
Returns (is_valid, error_message)
"""
if current_state not in MENU_CONFIG:
return False, f"❌ Unknown menu state: {current_state}"
menu_config = MENU_CONFIG[current_state]
valid_options = menu_config['valid_options']
# For dynamic menus, get valid options from context
if current_state == 'category_selection_menu':
available_categories = user_context.get('available_categories', [])
valid_options = [str(i) for i in range(1, len(available_categories) + 1)]
elif current_state == 'category_products_menu':
available_products = user_context.get('available_products', [])
valid_options = [str(i) for i in range(1, len(available_products) + 1)]
elif current_state == 'all_products_menu':
if products_df is not None and not products_df.empty:
valid_options = [str(i) for i in range(1, len(products_df) + 1)]
elif current_state == 'intelligent_products_menu':
available_products = user_context.get('available_products', [])
valid_options = [str(i) for i in range(1, len(available_products) + 1)]
# Check if selection is valid
if selection in valid_options:
return True, ""
# Generate error message with valid options
if valid_options:
error_msg = f"❌ Invalid selection for {menu_config['name']}. Valid options: {', '.join(valid_options)}"
else:
error_msg = f"❌ Invalid selection for {menu_config['name']}. No options available."
return False, error_msg
def get_menu_info(current_state: str, user_context: dict) -> dict:
"""
Get information about the current menu including valid options
"""
if current_state not in MENU_CONFIG:
return {"name": "Unknown Menu", "valid_options": [], "option_descriptions": {}}
menu_config = MENU_CONFIG[current_state].copy()
# For dynamic menus, populate valid options from context
if current_state == 'category_selection_menu':
available_categories = user_context.get('available_categories', [])
menu_config['valid_options'] = [str(i) for i in range(1, len(available_categories) + 1)]
menu_config['option_descriptions'] = {
str(i): category for i, category in enumerate(available_categories, 1)
}
elif current_state == 'category_products_menu':
available_products = user_context.get('available_products', [])
menu_config['valid_options'] = [str(i) for i in range(1, len(available_products) + 1)]
menu_config['option_descriptions'] = {
str(i): product.get('Product Name', f'Product {i}')
for i, product in enumerate(available_products, 1)
}
elif current_state == 'all_products_menu':
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
menu_config['valid_options'] = [str(i) for i in range(1, len(all_products) + 1)]
menu_config['option_descriptions'] = {
str(i): product.get('Product Name', f'Product {i}')
for i, product in enumerate(all_products, 1)
}
elif current_state == 'intelligent_products_menu':
available_products = user_context.get('available_products', [])
menu_config['valid_options'] = [str(i) for i in range(1, len(available_products) + 1)]
menu_config['option_descriptions'] = {
str(i): product.get('Product Name', f'Product {i}')
for i, product in enumerate(available_products, 1)
}
return menu_config
# Voice processing functions
async def download_voice_file(media_url: str, filename: str) -> str:
"""Download voice file from WhatsApp"""
try:
# Create temp_voice directory if it doesn't exist
os.makedirs('temp_voice', exist_ok=True)
# Download the file
async with httpx.AsyncClient() as client:
response = await client.get(media_url)
response.raise_for_status()
file_path = os.path.join('temp_voice', filename)
with open(file_path, 'wb') as f:
f.write(response.content)
logger.info(f"Voice file downloaded: {file_path}")
return file_path
except Exception as e:
logger.error(f"Error downloading voice file: {e}")
return None
async def transcribe_voice_with_openai(file_path: str) -> str:
"""Transcribe voice file using OpenAI Whisper with intelligent English/Urdu focus"""
try:
# Check if file exists and has content
if not os.path.exists(file_path):
logger.error(f"[Transcribe] File not found: {file_path}")
return None
file_size = os.path.getsize(file_path)
if file_size == 0:
logger.error(f"[Transcribe] Empty file: {file_path}")
return None
logger.info(f"[Transcribe] Transcribing file: {file_path} (size: {file_size} bytes)")
# Intelligent English/Urdu focused system prompt
system_prompt = """
You are transcribing voice messages for Apex Biotical Veterinary WhatsApp Assistant.
FOCUS: The user will speak in English, Urdu, or a mix of both languages. Be intelligent and natural in understanding their speech.
PRODUCT NAMES (exact spelling required):
- Hydropex, Respira Aid Plus, Heposel, Bromacid, Hexatox
- APMA Fort, Para C.E, Tribiotic, PHYTO-SAL, Mycopex Super
- Eflin KT-20, Salcozine ST-30, Oftilex UA-10, Biscomin 10
- Apvita Plus, B-G Aspro-C, EC-Immune, Liverpex, Symodex
- Respira Aid, Adek Gold, Immuno DX
ENGLISH NUMBERS: one->1, two->2, three->3, four->4, five->5, six->6, seven->7, eight->8, nine->9, ten->10
URDU NUMBERS: aik->1, ek->1, do->2, teen->3, char->4, panch->5, cheh->6, saat->7, aath->8, nau->9, das->10
MENU COMMANDS:
- English: main, menu, back, home, start, option, number, search, browse, download, catalog, contact, availability
- Urdu: main menu, option, number, search, browse, download, catalog, contact, availability
GREETINGS:
- English: hi, hello, hey, good morning, good afternoon, good evening
- Urdu: salam, assalamu alaikum, adaab, namaste, khuda hafiz
TRANSCRIPTION RULES:
1. Intelligently transcribe English and Urdu speech
2. Handle mixed English-Urdu speech naturally
3. Convert numbers to digits
4. Preserve product names exactly
5. Only return "unclear audio" if the voice is genuinely unclear or inaudible
6. Be natural and conversational in understanding
EXAMPLES:
- "hydropex" -> "hydropex"
- "respira aid plus" -> "respira aid plus"
- "option one" -> "1"
- "main menu" -> "main"
- "salam" -> "salam"
- "search products" -> "search products"
- "how many products" -> "how many products"
- "kitne products hain" -> "kitne products hain"
- Genuinely unclear audio -> "unclear audio"
"""
# First attempt with intelligent English/Urdu focus
with open(file_path, 'rb') as audio_file:
transcript = openai.Audio.transcribe(
model="whisper-1",
file=audio_file,
language="en", # Start with English
prompt=system_prompt
)
transcribed_text = transcript.text.strip()
logger.info(f"[Transcribe] Voice transcribed (English): '{transcribed_text}'")
# If first attempt failed or seems unclear, try with Urdu-specific prompt
if not transcribed_text or len(transcribed_text.strip()) < 2:
logger.warning(f"[Transcribe] First attempt failed, trying with Urdu-specific prompt")
urdu_system_prompt = """
You are transcribing Urdu voice messages for Apex Biotical Veterinary WhatsApp Assistant.
FOCUS: The user will speak in Urdu, English, or a mix of both. Be intelligent and natural.
PRODUCT NAMES (Urdu/English):
- ہائیڈروپیکس (Hydropex)
- ریسپیرا ایڈ پلس (Respira Aid Plus)
- ہیپوسیل (Heposel)
- بروماسڈ (Bromacid)
- ہیکساٹوکس (Hexatox)
- اے پی ایم اے فورٹ (APMA Fort)
- پیرا سی ای (Para C.E)
- ٹرائی بیوٹک (Tribiotic)
- فائٹو سال (PHYTO-SAL)
- مائیکوپیکس سپر (Mycopex Super)
URDU NUMBERS (convert to digits):
- ایک (1), دو (2), تین (3), چار (4), پانچ (5)
- چھ (6), سات (7), آٹھ (8), نو (9), دس (10)
- گیارہ (11), بارہ (12), تیرہ (13), چودہ (14), پندرہ (15)
- سولہ (16), سترہ (17), اٹھارہ (18), انیس (19), بیس (20)
URDU GREETINGS:
- سلام (salam), السلام علیکم (assalamu alaikum)
- آداب (adaab), نمستے (namaste), خدا حافظ (khuda hafiz)
URDU MENU COMMANDS:
- مین مینو (main menu), آپشن (option), نمبر (number)
- تلاش (search), براؤز (browse), ڈاؤن لوڈ (download)
- کیٹلاگ (catalog), رابطہ (contact), دستیابی (availability)
TRANSCRIPTION RULES:
1. Intelligently transcribe Urdu and English speech
2. Handle mixed language naturally
3. Convert Urdu numbers to digits
4. Preserve product names exactly
5. Only return "unclear audio" if voice is genuinely unclear
6. Be natural and conversational
"""
with open(file_path, 'rb') as audio_file:
transcript = openai.Audio.transcribe(
model="whisper-1",
file=audio_file,
language="ur", # Force Urdu
prompt=urdu_system_prompt
)
transcribed_text = transcript.text.strip()
logger.info(f"[Transcribe] Second attempt transcribed (Urdu): '{transcribed_text}'")
# Final check for genuinely unclear audio
if not transcribed_text or len(transcribed_text.strip()) < 2:
logger.warning(f"[Transcribe] Very short or empty transcription: '{transcribed_text}'")
return "unclear audio"
# Check for too many special characters (indicates unclear audio)
special_char_ratio = len(re.findall(r'[^\w\s]', transcribed_text)) / len(transcribed_text)
if special_char_ratio > 0.5: # More than 50% special characters
logger.warning(f"[Transcribe] Too many special characters, unclear audio: '{transcribed_text}'")
return "unclear audio"
return transcribed_text
except Exception as e:
logger.error(f"[Transcribe] Error transcribing voice: {e}")
logger.error(f"[Transcribe] File path: {file_path}")
return None
def process_voice_input(text: str) -> str:
"""Process and clean voice input text with veterinary domain-specific transcription error correction"""
if not text:
return ""
# Clean the text
processed_text = text.strip()
# Remove extra whitespace
processed_text = re.sub(r'\s+', ' ', processed_text)
# Remove all leading/trailing quotes and dots
processed_text = re.sub(r'^["\']*[. ]*', '', processed_text)
processed_text = re.sub(r'["\']*[. ]*$', '', processed_text)
# Remove repeated phrases (if two sentences are very similar, keep only one)
# Split by sentence-ending punctuation
from rapidfuzz import fuzz
sentences = re.split(r'[.!?]+', processed_text)
unique_sentences = []
for s in sentences:
s = s.strip()
if not s:
continue
# Only add if not very similar to any already added
if not any(fuzz.ratio(s, us) > 85 for us in unique_sentences):
unique_sentences.append(s)
processed_text = '. '.join(unique_sentences)
# Remove any remaining duplicate words/phrases
words = processed_text.split()
if len(words) > 5:
mid = len(words) // 2
first_half = ' '.join(words[:mid])
second_half = ' '.join(words[mid:])
if fuzz.ratio(first_half, second_half) > 85:
processed_text = first_half
# Fix special characters and encoding issues
processed_text = clean_special_characters(processed_text)
return processed_text
def clean_special_characters(text: str) -> str:
"""Clean special characters and fix encoding issues"""
if not text:
return text
# Fix common encoding issues
replacements = {
'â€"': '–', # Fix en dash
'â€"': '—', # Fix em dash
'’': "'", # Fix apostrophe
'“': '"', # Fix opening quote
'â€': '"', # Fix closing quote
'…': '...', # Fix ellipsis
'•': '•', # Fix bullet
'‰': '°', # Fix degree symbol
'′': '′', # Fix prime
'″': '″', # Fix double prime
'‼': '™', # Fix trademark
'‮': '®', # Fix registered
'
': '©', # Fix copyright
'â€': '–', # Generic fix for en dash
'â€"': '—', # Generic fix for em dash
'’': "'", # Generic fix for apostrophe
'“': '"', # Generic fix for opening quote
'â€': '"', # Generic fix for closing quote
'…': '...', # Generic fix for ellipsis
'•': '•', # Generic fix for bullet
'‰': '°', # Generic fix for degree symbol
}
# Apply replacements
for old_char, new_char in replacements.items():
text = text.replace(old_char, new_char)
# Remove any remaining problematic characters
text = re.sub(r'â€[^"]*', '', text) # Remove any remaining †patterns
# Clean up multiple spaces
text = re.sub(r'\s+', ' ', text)
return text.strip()
# Basic punctuation cleanup
processed_text = processed_text.replace(' ,', ',').replace(' .', '.')
# Veterinary domain-specific transcription error corrections
transcription_fixes = {
# Common menu selection errors
'opium': 'option',
'opium numara': 'option number',
'opium number': 'option number',
'opium number one': 'option number one',
'opium number two': 'option number two',
'opium number three': 'option number three',
'opium one': 'option one',
'opium two': 'option two',
'opium three': 'option three',
'numara': 'number',
'numbara': 'number',
'numbra': 'number',
'numbra one': 'number one',
'numbra two': 'number two',
'numbra three': 'number three',
'numbra 1': 'number 1',
'numbra 2': 'number 2',
'numbra 3': 'number 3',
# Number fixes - only when they appear as standalone numbers
'aik': '1',
'ek': '1',
'do': '2',
'teen': '3',
'char': '4',
'panch': '5',
'che': '3',
'tree': '3',
'free': '3',
'for': '4',
'fiv': '5',
'sik': '6',
'sat': '7',
'ath': '8',
'nau': '9',
'das': '10',
# Navigation command fixes
'man': 'main',
'men': 'main',
'mean': 'main',
'mein': 'main',
'maine': 'main',
'menu': 'main',
'home': 'main',
'back': 'main',
'return': 'main',
# Veterinary product name corrections
'hydro pex': 'hydropex',
'hydro pex': 'hydropex',
'respira aid': 'respira aid plus',
'respira aid plus': 'respira aid plus',
'hepo sel': 'heposel',
'brom acid': 'bromacid',
'hexa tox': 'hexatox',
'apma fort': 'apma fort',
'para c': 'para c.e',
'para ce': 'para c.e',
'tribiotic': 'tribiotic',
'phyto sal': 'phyto-sal',
'mycopex': 'mycopex super',
'mycopex super': 'mycopex super',
'eflin': 'eflin kt-20',
'salcozine': 'salcozine st-30',
'oftilex': 'oftilex ua-10',
'biscomin': 'biscomin 10',
'apvita': 'apvita plus',
'bg aspro': 'b-g aspro-c',
'ec immune': 'ec-immune',
'liverpex': 'liverpex',
'symodex': 'symodex',
'adek': 'adek gold',
'immuno': 'immuno dx'
}
# Apply transcription fixes - but be careful with Islamic greetings
original_text = processed_text.lower()
# Special handling for Islamic greetings - don't change "aik" in "assalamu alaikum"
if 'assalamu alaikum' in original_text or 'assalam' in original_text:
# Don't apply number fixes to Islamic greetings
for wrong, correct in transcription_fixes.items():
if wrong in original_text and wrong not in ['aik', 'ek']: # Skip number fixes for greetings
processed_text = processed_text.lower().replace(wrong, correct)
logger.info(f"Fixed transcription error: '{wrong}' -> '{correct}' in '{text}'")
else:
# Apply all fixes for non-greeting text
for wrong, correct in transcription_fixes.items():
if wrong in original_text:
processed_text = processed_text.lower().replace(wrong, correct)
logger.info(f"Fixed transcription error: '{wrong}' -> '{correct}' in '{text}'")
logger.info(f"Voice input processed: '{text}' -> '{processed_text}'")
return processed_text
# Note: Voice messages are now processed exactly like text messages
# The transcribed voice text is passed directly to process_incoming_message
# This ensures consistent behavior between voice and text inputs
# Enhanced product search with veterinary domain expertise
def get_veterinary_product_matches(query: str) -> List[Dict[str, Any]]:
"""
Advanced veterinary product matching with domain-specific intelligence
"""
if not query:
return []
if products_df is None:
load_products_data()
normalized_query = normalize(query).lower().strip()
logger.info(f"[Veterinary Search] Searching for: '{normalized_query}'")
# Skip very short queries that are likely menu selections
if len(normalized_query) <= 2 and normalized_query.isdigit():
logger.info(f"[Veterinary Search] Skipping menu selection: '{normalized_query}'")
return []
# Check if this is a mode of action query
mode_of_action_keywords = ['mode of action', 'mechanism', 'how does it work', 'what does it do', 'how it works', 'mood of action']
is_mode_of_action_query = any(keyword in normalized_query for keyword in mode_of_action_keywords)
# Extract product name from mode of action query
if is_mode_of_action_query:
# Try to extract product name from the query
for _, row in products_df.iterrows():
product_name = str(row.get('Product Name', '')).lower()
if product_name in normalized_query:
logger.info(f"[Veterinary Search] Mode of action query for product: {product_name}")
return [row.to_dict()]
scored_matches = []
# Veterinary-specific query expansion
expanded_queries = [normalized_query]
# Expand by symptoms
for symptom_category, symptoms in VETERINARY_SYMPTOMS.items():
if any(symptom in normalized_query for symptom in symptoms):
expanded_queries.extend(symptoms)
# Expand by species
for species_category, species in VETERINARY_SPECIES.items():
if any(sp in normalized_query for sp in species):
expanded_queries.extend(species)
# Expand by category
for category_key, categories in VETERINARY_CATEGORIES.items():
if category_key in normalized_query:
expanded_queries.extend(categories)
# Enhanced veterinary product variations with more variations
veterinary_variations = {
'hydropex': ['hydropex', 'hydro pex', 'hydropex', 'electrolyte', 'dehydration', 'heat stress'],
'heposel': ['heposel', 'hepo sel', 'heposel', 'liver tonic', 'hepatoprotective'],
'bromacid': ['bromacid', 'brom acid', 'bromacid', 'respiratory', 'mucolytic'],
'respira aid': ['respira aid', 'respira aid plus', 'respiraaid', 'respiratory support'],
'hexatox': ['hexatox', 'hexa tox', 'hexatox', 'liver support', 'kidney support'],
'apma fort': ['apma fort', 'apmafort', 'mycotoxin', 'liver support'],
'para c': ['para c', 'para c.e', 'parace', 'heat stress', 'paracetamol'],
'tribiotic': ['tribiotic', 'antibiotic', 'respiratory infection'],
'phyto-sal': ['phyto-sal', 'phytosal', 'phytogenic', 'vitamin supplement'],
'mycopex': ['mycopex', 'mycopex super', 'mycotoxin binder', 'mold'],
'oftilex': ['oftilex', 'oftilex ua-10', 'ofloxacin', 'antibiotic'],
'biscomin': ['biscomin', 'biscomin 10', 'oxytetracycline', 'injectable'],
'apvita': ['apvita', 'apvita plus', 'vitamin b', 'amino acid'],
'bg aspro': ['bg aspro', 'b-g aspro-c', 'aspirin', 'vitamin c'],
'ec-immune': ['ec-immune', 'ec immune', 'ecimmune', 'immune', 'immunity'],
'liverpex': ['liverpex', 'liver', 'metabolic'],
'symodex': ['symodex', 'multivitamin', 'vitamin'],
'adek gold': ['adek gold', 'adekgold', 'vitamin', 'multivitamin'],
'immuno dx': ['immuno dx', 'immunodx', 'immune', 'antioxidant'],
'apex': ['apex', 'aapex', 'apex biotical'],
'apex biotical': ['apex biotical', 'apex', 'aapex']
}
# Add veterinary variations
for key, variations in veterinary_variations.items():
if key in normalized_query:
expanded_queries.extend(variations)
for _, row in products_df.iterrows():
best_score = 0
best_match_type = ""
match_details = {}
# Search across all relevant fields with veterinary weighting
search_fields = [
('Product Name', row.get('Product Name', ''), 1.0),
('Category', row.get('Category', ''), 0.8),
('Indications', row.get('Indications', ''), 0.9),
('Target Species', row.get('Target Species', ''), 0.7),
('Type', row.get('Type', ''), 0.6),
('Composition', row.get('Composition', ''), 0.5)
]
for field_name, field_value, weight in search_fields:
if pd.isna(field_value) or not field_value:
continue
field_str = str(field_value).lower()
# Exact matches (highest priority)
for expanded_query in expanded_queries:
if expanded_query in field_str or field_str in expanded_query:
score = 100 * weight
if score > best_score:
best_score = score
best_match_type = "exact"
match_details = {"field": field_name, "query": expanded_query}
# Fuzzy matching for close matches (improved threshold)
for expanded_query in expanded_queries:
if len(expanded_query) > 3: # Only fuzzy match longer queries
score = fuzz.partial_ratio(normalized_query, field_str) * weight
if score > best_score and score > 75: # Increased threshold for better accuracy
best_score = score
best_match_type = "fuzzy"
match_details = {"field": field_name, "query": expanded_query}
if best_score > 70:
product_dict = row.to_dict()
product_dict['_score'] = best_score
product_dict['_match_type'] = best_match_type
product_dict['_match_details'] = match_details
scored_matches.append(product_dict)
scored_matches.sort(key=lambda x: x['_score'], reverse=True)
# Remove duplicates based on product name
seen_names = set()
unique_matches = []
for match in scored_matches:
if match['Product Name'] not in seen_names:
seen_names.add(match['Product Name'])
unique_matches.append(match)
return unique_matches
def normalize(text: str) -> str:
"""Normalize text for search"""
if not text:
return ""
# Convert to lowercase and remove extra whitespace
normalized = text.lower().strip()
# Remove special characters but keep spaces
normalized = re.sub(r'[^\w\s]', '', normalized)
# Replace multiple spaces with single space
normalized = re.sub(r'\s+', ' ', normalized)
return normalized
# Enhanced context management with veterinary domain awareness
class VeterinaryContextManager:
def __init__(self):
self.user_contexts = {}
self.conversation_history = defaultdict(list)
self.product_analytics = defaultdict(int)
self.session_data = {}
def get_context(self, phone_number: str) -> Dict[str, Any]:
"""Get or create user context with veterinary domain awareness"""
if phone_number not in self.user_contexts:
self.user_contexts[phone_number] = {
"current_state": "main_menu",
"current_menu": "main_menu",
"current_menu_options": ["Search Veterinary Products", "Browse Categories", "Download Catalog"],
"current_product": None,
"current_category": None,
"search_history": [],
"product_interests": [],
"species_preference": None,
"symptom_context": None,
"last_interaction": datetime.now(),
"session_start": datetime.now(),
"interaction_count": 0,
"last_message": "",
"available_categories": [],
"available_products": []
}
return self.user_contexts[phone_number]
def update_context(self, phone_number: str, **kwargs):
"""Update user context with veterinary domain data"""
context = self.get_context(phone_number)
context.update(kwargs)
context["last_interaction"] = datetime.now()
context["interaction_count"] += 1
# Track product interests for recommendations
if "current_product" in kwargs and kwargs["current_product"]:
product_name = kwargs["current_product"].get("Product Name", "")
if product_name:
context["product_interests"].append(product_name)
self.product_analytics[product_name] += 1
def add_to_history(self, phone_number: str, message: str, response: str):
"""Add interaction to conversation history"""
self.conversation_history[phone_number].append({
"timestamp": datetime.now(),
"user_message": message,
"bot_response": response
})
# Keep only last 20 interactions
if len(self.conversation_history[phone_number]) > 20:
self.conversation_history[phone_number] = self.conversation_history[phone_number][-20:]
def get_recommendations(self, phone_number: str) -> List[Dict[str, Any]]:
"""Get personalized product recommendations based on user history"""
context = self.get_context(phone_number)
recommendations = []
# Recommend based on product interests
if context["product_interests"]:
for product_name in context["product_interests"][-3:]: # Last 3 products
products = get_veterinary_product_matches(product_name)
if products:
# Find related products in same category
category = products[0].get("Category", "")
if category:
category_products = get_products_by_category(category)
for product in category_products[:3]:
if product.get("Product Name") != product_name:
recommendations.append(product)
# Remove duplicates and limit
seen = set()
unique_recommendations = []
for rec in recommendations:
name = rec.get("Product Name", "")
if name and name not in seen:
seen.add(name)
unique_recommendations.append(rec)
return unique_recommendations[:5]
# Initialize context manager
context_manager = VeterinaryContextManager()
# Enhanced product response with veterinary domain expertise
def generate_veterinary_product_response(product_info: Dict[str, Any], user_context: Dict[str, Any], reply_language: str = 'en') -> str:
"""Generate comprehensive veterinary product response with intelligent information handling"""
def clean_text(text):
if pd.isna(text) or text is None:
return "Not specified"
cleaned = str(text).strip()
# Apply special character cleaning
cleaned = clean_special_characters(cleaned)
return cleaned
# Extract product details
product_name = clean_text(product_info.get('Product Name', ''))
product_type = clean_text(product_info.get('Type', ''))
category = clean_text(product_info.get('Category', ''))
indications = clean_text(product_info.get('Indications', ''))
# Check for PDF link in the CSV data
pdf_link = ""
try:
# Load CSV data to check for PDF link
csv_data = pd.read_csv('Veterinary.csv')
product_row = csv_data[csv_data['Product Name'] == product_name]
if not product_row.empty:
brochure_link = product_row.iloc[0].get('Brochure (PDF)', '')
if pd.notna(brochure_link) and brochure_link.strip():
pdf_link = brochure_link.strip()
except Exception as e:
logger.warning(f"Error checking PDF link for {product_name}: {e}")
# Build the response based on language
if reply_language == 'ur':
response = f"""🧪 *نام:* {product_name}
📦 *قسم:* {product_type}
🏥 *زمرہ:* {category}
💊 *استعمال:* {indications}"""
# Add PDF link if available, in the requested format
if pdf_link:
response += f"\n\n📄 پروڈکٹ بروشر دستیاب ہے\n🔗 {product_name} پی ڈی ایف:\n{pdf_link}"
# Add menu options in Urdu
response += f"""
💬 *دستیاب اختیارات:*
1️⃣ ویٹرنری کنسلٹنٹ سے بات کریں
2️⃣ دستیابی کے بارے میں پوچھیں
3️⃣ مین مینو پر واپس جائیں
💬 ایک اختیار منتخب کریں یا متعلقہ مصنوعات کے بارے میں پوچھیں"""
else:
response = f"""🧪 *Name:* {product_name}
📦 *Type:* {product_type}
🏥 *Category:* {category}
💊 *Used For:* {indications}"""
# Add PDF link if available, in the requested format
if pdf_link:
response += f"\n\n📄 Product Brochure Available\n🔗 {product_name} PDF:\n{pdf_link}"
# Add menu options
response += f"""
💬 *Available Actions:*
1️⃣ Talk to Veterinary Consultant
2️⃣ Inquire About Availability
3️⃣ Back to Main Menu
💬 Select an option or ask about related products"""
return response
def clean_text_for_pdf(text: str) -> str:
"""Clean text for PDF generation"""
if pd.isna(text) or text is None:
return "N/A"
cleaned = str(text)
# Apply special character cleaning first
cleaned = clean_special_characters(cleaned)
# Remove or replace problematic characters for PDF
cleaned = cleaned.replace('â€"', '-').replace('â€"', '"').replace('’', "'")
cleaned = cleaned.replace('“', '"').replace('â€', '"').replace('…', '...')
cleaned = re.sub(r'[^\w\s\-.,()%:;]', '', cleaned)
return cleaned.strip()
# Enhanced PDF generation with veterinary domain expertise
def generate_veterinary_pdf(product: Dict[str, Any]) -> bytes:
"""
Generate comprehensive veterinary PDF with professional formatting
"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4)
styles = getSampleStyleSheet()
# Veterinary-specific styles
title_style = ParagraphStyle(
'VeterinaryTitle',
parent=styles['Heading1'],
fontSize=18,
spaceAfter=25,
alignment=TA_CENTER,
textColor=colors.darkblue,
fontName='Helvetica-Bold'
)
heading_style = ParagraphStyle(
'VeterinaryHeading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=12,
textColor=colors.darkgreen,
fontName='Helvetica-Bold'
)
normal_style = ParagraphStyle(
'VeterinaryNormal',
parent=styles['Normal'],
fontSize=11,
spaceAfter=8,
alignment=TA_JUSTIFY,
fontName='Helvetica'
)
# Build PDF content
story = []
# Header with veterinary branding
story.append(Paragraph("🏥 APEX BIOTICAL VETERINARY PRODUCTS", title_style))
story.append(Spacer(1, 20))
# Product information
product_name = clean_text_for_pdf(product.get('Product Name', 'Unknown Product'))
story.append(Paragraph(f"<b>Product: {product_name}</b>", heading_style))
story.append(Spacer(1, 15))
# Clinical information table
clinical_info = [
['Field', 'Information'],
['Product Name', clean_text_for_pdf(product.get('Product Name', 'N/A'))],
['Category', clean_text_for_pdf(product.get('Category', 'N/A'))],
['Target Species', clean_text_for_pdf(product.get('Target Species', 'N/A'))],
['Product Type', clean_text_for_pdf(product.get('Type', 'N/A'))]
]
clinical_table = Table(clinical_info, colWidths=[2*inch, 4*inch])
clinical_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.lightblue),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(Paragraph("Clinical Information", heading_style))
story.append(clinical_table)
story.append(Spacer(1, 20))
# Clinical details
if product.get('Indications'):
story.append(Paragraph("Clinical Indications", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Indications')), normal_style))
story.append(Spacer(1, 15))
if product.get('Composition'):
story.append(Paragraph("Composition", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Composition')), normal_style))
story.append(Spacer(1, 15))
if product.get('Dosage & Administration'):
story.append(Paragraph("Dosage & Administration", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Dosage & Administration')), normal_style))
story.append(Spacer(1, 15))
if product.get('Precautions'):
story.append(Paragraph("Precautions", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Precautions')), normal_style))
story.append(Spacer(1, 15))
if product.get('Storage'):
story.append(Paragraph("Storage", heading_style))
story.append(Paragraph(clean_text_for_pdf(product.get('Storage')), normal_style))
story.append(Spacer(1, 15))
# Veterinary disclaimer
story.append(Paragraph("Veterinary Disclaimer", heading_style))
disclaimer_text = (
"This product should be used under veterinary supervision. "
"Always consult with a qualified veterinarian before administration. "
"Follow dosage instructions precisely and monitor animal response. "
"Store according to manufacturer guidelines and keep out of reach of children."
)
story.append(Paragraph(disclaimer_text, normal_style))
# Build PDF
doc.build(story)
buffer.seek(0)
return buffer.getvalue()
async def send_catalog_pdf(phone_number: str):
"""Send the complete product catalog as a link to the PDF"""
try:
# Use the correct Google Drive link converted to direct download format
catalog_url = "https://drive.google.com/uc?export=download&id=1mxpkFf3DY-n3QHzZBe_CdksR-gHu2f_0"
message = (
"📋 *Apex Biotical Veterinary Products Catalog*\n\n"
"📄 Here's your complete product catalog with all our veterinary products:\n"
f"📎 [Apex Biotical Veterinary Products Catalog.pdf]({catalog_url})\n\n"
"💬 For detailed information about any specific product, type its name or contact our sales team.\n\n"
"Type main at any time to return to the main menu."
)
send_whatsjet_message(phone_number, message)
except Exception as e:
logger.error(f"Error sending catalog: {e}")
send_whatsjet_message(phone_number,
"❌ Error sending catalog. Please try again or contact our sales team for assistance.")
async def send_individual_product_pdf(phone_number: str, product: Dict[str, Any]):
"""Send individual product PDF with download link"""
try:
# Generate PDF for the product
pdf_content = generate_veterinary_pdf(product)
# Create filename
product_name = product.get('Product Name', 'Unknown_Product')
safe_name = re.sub(r'[^\w\s-]', '', product_name).replace(' ', '_')
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{safe_name}_{timestamp}.pdf"
# Save PDF to uploads directory
uploads_dir = "../uploads"
os.makedirs(uploads_dir, exist_ok=True)
pdf_path = os.path.join(uploads_dir, filename)
with open(pdf_path, 'wb') as f:
f.write(pdf_content)
# Generate download URL
base_url = os.getenv("PUBLIC_BASE_URL", "http://localhost:8000")
download_url = f"{base_url}/uploads/{filename}"
# Send PDF via WhatsApp media
success = send_whatsjet_message(
phone_number,
f"📄 *{product_name} - Product Information*\n\nHere's the detailed product information in PDF format.",
media_type="application/pdf",
media_path=pdf_path,
filename=filename
)
# Also send direct download link as backup
if success:
message = (
f"📄 *{product_name} - Product Information*\n\n"
"📎 [Direct Download Link]({download_url})\n\n"
"💬 *If the PDF didn't download, use the link above*\n"
"Type 'main' to return to main menu."
)
send_whatsjet_message(phone_number, message)
else:
# If media send failed, send only the link
message = (
f"📄 *{product_name} - Product Information*\n\n"
"📎 [Download Product PDF]({download_url})\n\n"
"💬 *Click the link above to download the product information*\n"
"Type 'main' to return to main menu."
)
send_whatsjet_message(phone_number, message)
except Exception as e:
logger.error(f"Error sending individual product PDF: {e}")
send_whatsjet_message(phone_number,
"❌ Error generating product PDF. Please try again or contact our sales team for assistance.")
# --- WhatsJet Message Sending ---
def split_message_for_whatsapp(message: str, max_length: int = 1000) -> list:
"""Split a long message into chunks for WhatsApp (max 1000 chars per message)."""
return [message[i:i+max_length] for i in range(0, len(message), max_length)]
def send_whatsjet_message(phone_number: str, message: str, media_type: str = None, media_path: str = None, filename: str = None) -> bool:
"""Send a message using WhatsJet API with optional media attachment or public URL"""
if not all([WHATSJET_API_URL, WHATSJET_VENDOR_UID, WHATSJET_API_TOKEN]):
logger.error("[WhatsJet] Missing environment variables.")
return False
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-message?token={WHATSJET_API_TOKEN}"
# Handle media messages (local file or public URL)
if media_type and media_path:
# If media_path is a public URL, use media_url and send caption
if isinstance(media_path, str) and media_path.startswith("http"):
# Try different payload formats for WhatsJet API
payload_formats = [
# Format 1: Using caption field
{
"phone_number": phone_number,
"caption": message,
"media_type": media_type,
"media_url": media_path,
"media_filename": filename or os.path.basename(media_path)
},
# Format 2: Using message_body instead of caption
{
"phone_number": phone_number,
"message_body": message,
"media_type": media_type,
"media_url": media_path,
"media_filename": filename or os.path.basename(media_path)
},
# Format 3: Simplified format without media_filename
{
"phone_number": phone_number,
"message_body": message,
"media_type": media_type,
"media_url": media_path
},
# Format 4: Using different field names
{
"phone_number": phone_number,
"caption": message,
"type": media_type,
"url": media_path
}
]
for i, payload in enumerate(payload_formats, 1):
try:
logger.info(f"[WhatsJet] Trying payload format {i}: {payload}")
response = httpx.post(
url,
json=payload,
timeout=15
)
if response.status_code == 200:
logger.info(f"[WhatsJet] Media URL message sent successfully with format {i} to {phone_number}")
return True
else:
logger.warning(f"[WhatsJet] Format {i} failed with status {response.status_code}: {response.text[:200]}")
except Exception as e:
logger.warning(f"[WhatsJet] Format {i} exception: {e}")
continue
# If all formats failed, log the error and return False
logger.error(f"[WhatsJet] All media URL payload formats failed for {phone_number}")
return False
else:
# Local file logic as before
try:
with open(media_path, 'rb') as f:
media_content = f.read()
media_b64 = base64.b64encode(media_content).decode('utf-8')
payload = {
"phone_number": phone_number,
"message_body": message,
'media_type': media_type,
'media_content': media_b64,
'media_filename': filename or os.path.basename(media_path)
}
try:
response = httpx.post(
url,
json=payload,
timeout=15
)
response.raise_for_status()
logger.info(f"[WhatsJet] Media message sent successfully to {phone_number}")
return True
except Exception as e:
logger.error(f"[WhatsJet] Exception sending media message: {e}")
return False
except Exception as e:
logger.error(f"[WhatsJet] Exception preparing media message: {str(e)}")
return False
# Handle text messages
if not message.strip():
return True # Don't send empty messages
for chunk in split_message_for_whatsapp(message):
try:
payload = {"phone_number": phone_number, "message_body": chunk}
try:
response = httpx.post(
url,
json=payload,
timeout=15
)
response.raise_for_status()
logger.info(f"[WhatsJet] Text chunk sent successfully to {phone_number}")
except Exception as e:
logger.error(f"[WhatsJet] Exception sending text chunk: {e}")
return False
except Exception as e:
logger.error(f"[WhatsJet] Exception preparing text chunk: {str(e)}")
return False
logger.info(f"[WhatsJet] Successfully sent complete text message to {phone_number}")
return True
def send_whatsjet_media_image_only(phone_number: str, image_url: str, filename: str = None) -> bool:
"""Send an image with optional caption using WhatsJet's /contact/send-media-message endpoint."""
if not all([WHATSJET_API_URL, WHATSJET_VENDOR_UID, WHATSJET_API_TOKEN]):
logger.error("[WhatsJet] Missing environment variables for media message.")
return False
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-media-message"
headers = {
"Authorization": f"Bearer {WHATSJET_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"phone_number": phone_number,
"media_type": "image",
"media_url": image_url
}
if filename:
payload["file_name"] = filename
try:
logger.info(f"[WhatsJet] Sending image with payload: {payload}")
response = httpx.post(url, json=payload, headers=headers, timeout=30)
logger.info(f"[WhatsJet] Image response status: {response.status_code}")
logger.info(f"[WhatsJet] Image response body: {response.text[:500]}...")
if response.status_code == 200:
logger.info(f"[WhatsJet] Image sent successfully to {phone_number}")
return True
else:
logger.error(f"[WhatsJet] Failed to send image: {response.status_code} - {response.text}")
return False
except Exception as e:
logger.error(f"[WhatsJet] Exception sending image: {e}")
return False
# --- Health Check Endpoint ---
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"products_loaded": len(products_df) if products_df is not None else 0,
"openai_available": bool(OPENAI_API_KEY),
"whatsjet_configured": bool(all([WHATSJET_API_URL, WHATSJET_VENDOR_UID, WHATSJET_API_TOKEN]))
}
@app.get("/test-voice")
async def test_voice():
"""Test endpoint to check voice processing logic"""
return {
"voice_detection": {
"audio_type": "audio" in ['audio', 'voice'],
"voice_type": "voice" in ['audio', 'voice'],
"media_audio": {'type': 'audio'}.get('type') == 'audio'
},
"openai_available": bool(OPENAI_API_KEY),
"langdetect_available": True,
"deep_translator_available": True
}
@app.get("/catalog")
async def get_catalog():
"""Serve the complete product catalog PDF"""
try:
catalog_path = "static/Hydropex.pdf"
if os.path.exists(catalog_path):
return FileResponse(
catalog_path,
media_type="application/pdf",
filename="Apex_Biotical_Veterinary_Catalog.pdf"
)
else:
raise HTTPException(status_code=404, detail="Catalog PDF not found")
except Exception as e:
logger.error(f"Error serving catalog: {e}")
raise HTTPException(status_code=500, detail="Error serving catalog")
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<h2>Apex Biotical Veterinary WhatsApp Assistant</h2>
<p>The Assistant is running! Use the API endpoints for WhatsApp integration.</p>
<ul>
<h2>Apex Biotical Veterinary WhatsApp Bot</h2>
<p>The bot is running! Use the API endpoints for WhatsApp integration.</p>
<ul>
<li><b>POST /webhook</b> – WhatsApp webhook endpoint</li>
<li><b>GET /health</b> – Health check</li>
<li><b>GET /catalog</b> – Download product catalog PDF</li>
</ul>
"""
# --- Webhook Endpoint for WhatsApp/WhatsJet ---
@app.post("/webhook")
async def webhook(request: Request):
"""Handle incoming WhatsApp/WhatsJet webhook messages"""
try:
data = await request.json()
logger.info(f"[Webhook] Incoming data: {data}")
# WhatsJet/Custom format
if isinstance(data, dict) and 'contact' in data and 'message' in data:
from_number = str(data['contact'].get('phone_number', '')).replace('+', '').replace(' ', '')
msg = data['message']
# Robust media type extraction
media = msg.get('media', {}) if isinstance(msg, dict) else {}
media_type = None
if isinstance(media, dict):
media_type = media.get('type')
# If media is a list or None, media_type stays None
# Check for voice/audio messages first (they might not have body)
if isinstance(msg, dict) and (msg.get('type') in ['audio', 'voice'] or media_type == 'audio'):
logger.info(f"[Webhook] Processing voice message from {from_number}")
await process_incoming_message(from_number, msg)
return Response(status_code=200)
# Ignore status updates and messages without body (only for non-voice messages)
if not isinstance(msg, dict) or msg.get('body') is None:
return Response(status_code=200)
# Ignore specific status updates
if msg.get('status') in ['delivered', 'sent', 'read', 'failed']:
return Response(status_code=200)
# Process actual message
await process_incoming_message(from_number, msg)
return Response(status_code=200)
# WhatsApp Cloud API format
if isinstance(data, dict) and 'entry' in data and isinstance(data['entry'], list):
for entry in data['entry']:
if not isinstance(entry, dict):
logger.error(f"[Webhook] entry is not a dict: {type(entry)}")
continue
changes = entry.get('changes', [])
if not isinstance(changes, list):
logger.error(f"[Webhook] changes is not a list: {type(changes)}")
continue
for change in changes:
if not isinstance(change, dict):
logger.error(f"[Webhook] change is not a dict: {type(change)}")
continue
value = change.get('value', {})
if not isinstance(value, dict):
logger.error(f"[Webhook] value is not a dict: {type(value)}")
continue
messages = value.get('messages', [])
if not isinstance(messages, list):
logger.error(f"[Webhook] messages is not a list: {type(messages)}")
continue
for message in messages:
if not isinstance(message, dict):
logger.error(f"[Webhook] message is not a dict: {type(message)}")
continue
from_number = message.get('from', '')
# Ignore status updates
if message.get('type') == 'status':
continue
# Convert WhatsApp format to our format
msg = {
'body': message.get('text', {}).get('body', ''),
'type': message.get('type', 'text'),
'media': message.get('audio') or message.get('voice') or message.get('image') or message.get('document')
}
await process_incoming_message(from_number, msg)
return Response(status_code=200)
logger.warning(f"[Webhook] Unrecognized or malformed payload format: {type(data)}")
return Response(status_code=400)
except Exception as e:
logger.error(f"[Webhook] Error: {e}")
import traceback
logger.error(f"[Webhook] Traceback: {traceback.format_exc()}")
return Response(status_code=500)
def map_spoken_number_to_digit(text: str) -> str:
"""
Enhanced number mapping for voice input - supports both English and Urdu number systems
Handles various transcription errors and number formats
"""
if not text:
return ""
# Clean and normalize the text
text_lower = text.lower().strip()
text_clean = re.sub(r'[^\w\s]', '', text_lower)
# Comprehensive English number mappings
english_numbers = {
# Basic numbers
'one': '1', 'two': '2', 'three': '3', 'four': '4', 'five': '5',
'six': '6', 'seven': '7', 'eight': '8', 'nine': '9', 'ten': '10',
'eleven': '11', 'twelve': '12', 'thirteen': '13', 'fourteen': '14', 'fifteen': '15',
'sixteen': '16', 'seventeen': '17', 'eighteen': '18', 'nineteen': '19', 'twenty': '20',
'twenty one': '21', 'twenty two': '22', 'twenty three': '23',
# Common transcription errors
'won': '1', 'to': '2', 'too': '2', 'tree': '3', 'free': '3', 'for': '4', 'fiv': '5',
'sik': '6', 'sat': '7', 'ath': '8', 'nau': '9', 'das': '10',
'che': '3', 'fir': '4', 'fiv': '5', 'sik': '6', 'sat': '7', 'ath': '8', 'nau': '9',
# Ordinal numbers
'first': '1', 'second': '2', 'third': '3', 'fourth': '4', 'fifth': '5',
'sixth': '6', 'seventh': '7', 'eighth': '8', 'ninth': '9', 'tenth': '10',
# Menu variations
'option one': '1', 'option two': '2', 'option three': '3', 'option four': '4', 'option five': '5',
'number one': '1', 'number two': '2', 'number three': '3', 'number four': '4', 'number five': '5',
'menu one': '1', 'menu two': '2', 'menu three': '3', 'menu four': '4', 'menu five': '5',
'choice one': '1', 'choice two': '2', 'choice three': '3', 'choice four': '4', 'choice five': '5',
# Common transcription errors for menu selections
'opium one': '1', 'opium two': '2', 'opium three': '3', 'opium four': '4', 'opium five': '5',
'opium numara one': '1', 'opium numara two': '2', 'opium numara three': '3',
'opium number one': '1', 'opium number two': '2', 'opium number three': '3',
'opium number 1': '1', 'opium number 2': '2', 'opium number 3': '3',
# Direct digits
'1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '6': '6', '7': '7', '8': '8', '9': '9', '10': '10',
'11': '11', '12': '12', '13': '13', '14': '14', '15': '15', '16': '16', '17': '17', '18': '18', '19': '19', '20': '20',
'21': '21', '22': '22', '23': '23'
}
# Comprehensive Urdu number mappings (Roman Urdu and Urdu script)
urdu_numbers = {
# Roman Urdu numbers
'aik': '1', 'ek': '1', 'do': '2', 'teen': '3', 'char': '4', 'panch': '5',
'che': '6', 'sat': '7', 'ath': '8', 'nau': '9', 'das': '10',
'gyara': '11', 'bara': '12', 'tera': '13', 'choda': '14', 'pandra': '15',
'sola': '16', 'satara': '17', 'athara': '18', 'unnees': '19', 'bees': '20',
'ikkees': '21', 'baees': '22', 'tees': '23',
# Urdu script numbers
'ایک': '1', 'دو': '2', 'تین': '3', 'چار': '4', 'پانچ': '5',
'چھ': '6', 'سات': '7', 'آٹھ': '8', 'نو': '9', 'دس': '10',
'گیارہ': '11', 'بارہ': '12', 'تیرہ': '13', 'چودہ': '14', 'پندرہ': '15',
'سولہ': '16', 'سترہ': '17', 'اٹھارہ': '18', 'انیس': '19', 'بیس': '20',
'اکیس': '21', 'بائیس': '22', 'تئیس': '23',
# Menu variations in Urdu
'نمبر ایک': '1', 'نمبر دو': '2', 'نمبر تین': '3', 'نمبر چار': '4', 'نمبر پانچ': '5',
'آپشن ایک': '1', 'آپشن دو': '2', 'آپشن تین': '3', 'آپشن چار': '4', 'آپشن پانچ': '5',
'اختیار ایک': '1', 'اختیار دو': '2', 'اختیار تین': '3', 'اختیار چار': '4', 'اختیار پانچ': '5',
# Common transcription errors in Urdu
'numara': 'number', 'numbara': 'number', 'numbra': 'number',
'numbra one': '1', 'numbra two': '2', 'numbra three': '3', 'numbra 1': '1', 'numbra 2': '2', 'numbra 3': '3',
'aik': '1', 'ek': '1', 'do': '2', 'teen': '3', 'char': '4', 'panch': '5',
'che': '6', 'sat': '7', 'ath': '8', 'nau': '9', 'das': '10'
}
# Combined mappings
all_numbers = {**english_numbers, **urdu_numbers}
# First, try exact matches
if text_lower in all_numbers:
return all_numbers[text_lower]
# Try pattern matching for common transcription errors - improved patterns
patterns = [
(r'opium\s+numara?\s*(\d+)', r'\1'), # "opium numara 1" -> "1"
(r'opium\s+number?\s*(\d+)', r'\1'), # "opium number 1" -> "1"
(r'opium\s+(\d+)', r'\1'), # "opium 1" -> "1"
(r'numara?\s*(\d+)', r'\1'), # "numara 1" -> "1"
(r'number?\s*(\d+)\s*[.!]?', r'\1'), # "number 1" or "number 1." -> "1" - improved
(r'option\s*(\d+)\s*[.!]?', r'\1'), # "option 1" or "option 1." -> "1" - improved
(r'choice\s*(\d+)\s*[.!]?', r'\1'), # "choice 1" or "choice 1." -> "1" - improved
(r'menu\s*(\d+)\s*[.!]?', r'\1'), # "menu 1" or "menu 1." -> "1" - improved
(r'(\d+)\s*[.!]?\s*$', r'\1'), # "22." -> "22" - improved
(r'^(\d+)\s*[.!]?\s*', r'\1'), # "22." -> "22" - improved
]
for pattern, replacement in patterns:
match = re.search(pattern, text_lower)
if match:
return match.group(1)
# Try fuzzy matching for close matches
for number_word, digit in all_numbers.items():
if len(number_word) > 2: # Only fuzzy match longer words
if fuzz.ratio(text_lower, number_word) > 80:
logger.info(f"Fuzzy matched '{text_lower}' to '{number_word}' -> '{digit}'")
return digit
# Try extracting numbers from mixed text
number_match = re.search(r'(\d+)', text_clean)
if number_match:
return number_match.group(1)
# If no match found, return original text
logger.warning(f"No number mapping found for: '{text}'")
return text
def process_intelligent_voice_command(message_body: str, current_state: str, user_context: dict) -> str:
"""
Process voice commands intelligently for all menu states
Maps voice commands to appropriate menu selections consistently with text logic
"""
if not message_body:
return message_body
# Clean and normalize the input
cleaned_text = message_body.strip().lower()
logger.info(f"[Voice Command] Processing: '{message_body}' in state: {current_state}")
# First, check for navigation commands (main, menu, back, etc.)
# Make this more precise to avoid false positives from transcription errors
navigation_commands = [
'main', 'menu', 'start', 'home', 'back', 'return', 'go back', 'main menu',
'مین', 'مینو', 'شروع', 'گھر', 'واپس', 'ریٹرن', 'مین مینو',
'main menu', 'main menu please', 'go to main', 'back to main'
]
# Check for exact navigation commands or commands that start/end with navigation words
for cmd in navigation_commands:
# Check for exact match
if cleaned_text == cmd:
logger.info(f"[Voice Command] Exact navigation command detected: '{message_body}' -> 'main'")
return 'main'
# Check for commands that start with navigation word followed by space
if cleaned_text.startswith(cmd + ' '):
logger.info(f"[Voice Command] Navigation command at start detected: '{message_body}' -> 'main'")
return 'main'
# Check for commands that end with navigation word preceded by space
if cleaned_text.endswith(' ' + cmd):
logger.info(f"[Voice Command] Navigation command at end detected: '{message_body}' -> 'main'")
return 'main'
# Check for standalone navigation commands (surrounded by spaces or at boundaries)
if re.search(r'\b' + re.escape(cmd) + r'\b', cleaned_text):
# Additional check: make sure it's not part of a larger word
words = cleaned_text.split()
if cmd in words:
logger.info(f"[Voice Command] Navigation command as word detected: '{message_body}' -> 'main'")
return 'main'
# Handle number patterns more comprehensively
# Pattern 1: "Number X" or "Number X." or "Number X!" - more flexible
number_pattern1 = re.search(r'number\s*(\d+)\s*[.!]?', cleaned_text)
if number_pattern1:
number = number_pattern1.group(1)
logger.info(f"[Voice Command] Number pattern 1 detected: '{message_body}' -> '{number}'")
return number
# Pattern 2: "Option X" or "Option X." or "Option X!" - more flexible
option_pattern = re.search(r'option\s*(\d+)\s*[.!]?', cleaned_text)
if option_pattern:
number = option_pattern.group(1)
logger.info(f"[Voice Command] Option pattern detected: '{message_body}' -> '{number}'")
return number
# Pattern 3: "Product X" or "Product X." or "Product X!" - more flexible
product_pattern = re.search(r'product\s*(\d+)\s*[.!]?', cleaned_text)
if product_pattern:
number = product_pattern.group(1)
logger.info(f"[Voice Command] Product pattern detected: '{message_body}' -> '{number}'")
return number
# Pattern 4: "Category X" or "Category X." or "Category X!" - more flexible
category_pattern = re.search(r'category\s*(\d+)\s*[.!]?', cleaned_text)
if category_pattern:
number = category_pattern.group(1)
logger.info(f"[Voice Command] Category pattern detected: '{message_body}' -> '{number}'")
return number
# Pattern 5: Just a number at the end or beginning - more flexible
# Look for numbers at the end of the sentence
number_pattern2 = re.search(r'(\d+)\s*[.!]?\s*$', cleaned_text)
if number_pattern2:
number = number_pattern2.group(1)
logger.info(f"[Voice Command] Number pattern 2 detected: '{message_body}' -> '{number}'")
return number
# Pattern 6: Just a number at the beginning - more flexible
number_pattern3 = re.search(r'^(\d+)\s*[.!]?\s*', cleaned_text)
if number_pattern3:
number = number_pattern3.group(1)
logger.info(f"[Voice Command] Number pattern 3 detected: '{message_body}' -> '{number}'")
return number
# Pattern 7: Standalone number
if cleaned_text.isdigit():
logger.info(f"[Voice Command] Standalone number detected: '{message_body}' -> '{message_body}'")
return message_body
# Pattern 8: Extract any number from the text (fallback)
any_number_pattern = re.search(r'(\d+)', cleaned_text)
if any_number_pattern:
number = any_number_pattern.group(1)
logger.info(f"[Voice Command] Any number pattern detected: '{message_body}' -> '{number}'")
return number
# Handle spoken numbers in English and Urdu
spoken_number_mappings = {
# English spoken numbers
'one': '1', 'first': '1', '1st': '1',
'two': '2', 'second': '2', '2nd': '2', 'to': '2', 'too': '2',
'three': '3', 'third': '3', '3rd': '3', 'tree': '3',
'four': '4', 'fourth': '4', '4th': '4', 'for': '4',
'five': '5', 'fifth': '5', '5th': '5',
'six': '6', 'sixth': '6', '6th': '6',
'seven': '7', 'seventh': '7', '7th': '7',
'eight': '8', 'eighth': '8', '8th': '8',
'nine': '9', 'ninth': '9', '9th': '9',
'ten': '10', 'tenth': '10', '10th': '10',
'eleven': '11', 'eleventh': '11', '11th': '11',
'twelve': '12', 'twelfth': '12', '12th': '12',
'thirteen': '13', 'thirteenth': '13', '13th': '13',
'fourteen': '14', 'fourteenth': '14', '14th': '14',
'fifteen': '15', 'fifteenth': '15', '15th': '15',
'sixteen': '16', 'sixteenth': '16', '16th': '16',
'seventeen': '17', 'seventeenth': '17', '17th': '17',
'eighteen': '18', 'eighteenth': '18', '18th': '18',
'nineteen': '19', 'nineteenth': '19', '19th': '19',
'twenty': '20', 'twentieth': '20', '20th': '20',
'twenty one': '21', 'twenty-first': '21', '21st': '21',
'twenty two': '22', 'twenty-second': '22', '22nd': '22',
'twenty three': '23', 'twenty-third': '23', '23rd': '23',
# Urdu spoken numbers
'ایک': '1', 'پہلا': '1', 'پہلی': '1',
'دو': '2', 'دوسرا': '2', 'دوسری': '2',
'تین': '3', 'تیسرا': '3', 'تیسری': '3',
'چار': '4', 'چوتھا': '4', 'چوتھی': '4',
'پانچ': '5', 'پانچواں': '5', 'پانچویں': '5',
'چھ': '6', 'چھٹا': '6', 'چھٹی': '6',
'سات': '7', 'ساتواں': '7', 'ساتویں': '7',
'آٹھ': '8', 'آٹھواں': '8', 'آٹھویں': '8',
'نو': '9', 'نواں': '9', 'نویں': '9',
'دس': '10', 'دسواں': '10', 'دسویں': '10',
'گیارہ': '11', 'گیارہواں': '11', 'گیارہویں': '11',
'بارہ': '12', 'بارہواں': '12', 'بارہویں': '12',
'تیرہ': '13', 'تیرہواں': '13', 'تیرہویں': '13',
'چودہ': '14', 'چودہواں': '14', 'چودہویں': '14',
'پندرہ': '15', 'پندرہواں': '15', 'پندرہویں': '15',
'سولہ': '16', 'سولہواں': '16', 'سولہویں': '16',
'سترہ': '17', 'سترہواں': '17', 'سترہویں': '17',
'اٹھارہ': '18', 'اٹھارہواں': '18', 'اٹھارہویں': '18',
'انیس': '19', 'انیسواں': '19', 'انیسویں': '19',
'بیس': '20', 'بیسواں': '20', 'بیسویں': '20',
'اکیس': '21', 'اکیسواں': '21', 'اکیسویں': '21',
'بائیس': '22', 'بائیسواں': '22', 'بائیسویں': '22',
'تئیس': '23', 'تئیسواں': '23', 'تئیسویں': '23',
}
# Check for spoken numbers
for spoken, digit in spoken_number_mappings.items():
if spoken in cleaned_text:
logger.info(f"[Voice Command] Spoken number detected: '{message_body}' -> '{digit}'")
return digit
# Handle common transcription errors and variations
transcription_fixes = {
'bye': 'hi', # Common transcription error for "hi"
'hi': 'hi',
'hello': 'hi',
'hey': 'hi',
'main': 'main',
'menu': 'main',
'start': 'main',
'home': 'main',
'back': 'main',
'return': 'main',
'go back': 'main',
'main menu': 'main',
'main menu please': 'main',
'go to main': 'main',
'back to main': 'main',
}
# Check for transcription fixes
for error, correction in transcription_fixes.items():
if error in cleaned_text:
logger.info(f"[Voice Command] Transcription fix applied: '{message_body}' -> '{correction}'")
return correction
# If no pattern matches, return the original message for further processing
logger.info(f"[Voice Command] No specific pattern matched, returning original: '{message_body}'")
return message_body
async def process_incoming_message(from_number: str, msg: dict):
"""Process incoming message and send appropriate response with full intelligence"""
try:
# Safety check for message body
message_body = msg.get('body') if isinstance(msg, dict) else None
message_type = msg.get('type', 'text') if isinstance(msg, dict) else 'text'
reply_language = msg.get('reply_language', 'en') # Default to English
# Robust media type extraction
media = msg.get('media', {}) if isinstance(msg, dict) else {}
media_type = None
if isinstance(media, dict):
media_type = media.get('type')
# If media is a list or None, media_type stays None
# Handle voice messages FIRST - before checking message_body
if message_type in ['audio', 'voice'] or media_type == 'audio':
logger.info(f"[Process] Processing voice message from {from_number}")
await handle_voice_message_complete(from_number, msg)
return
# For text messages, check if body exists
if message_body is None:
logger.info(f"[Process] Skipping message from {from_number} - no body content")
return
message_body = message_body.strip()
logger.info(f"[Process] Processing {message_type} message from {from_number}: {message_body}")
# --- NEW: Recognize 'all products' queries ---
all_products_phrases = [
'all products', 'show all products', 'i want all the product information',
'i need all the product information', 'i want information about all products',
'i need information about all products',
'مجھے تمام پروڈکٹ کے بارے میں معلومات چاہیے',
'مجھے تمام پروڈکٹس کے بارے میں معلومات چاہئے',
'تمام پروڈکٹس', 'تمام پروڈکٹ', 'سارے پروڈکٹس', 'سارے پروڈکٹ'
]
def normalize(text):
return re.sub(r'[^\w\s\u0600-\u06FF]', '', text).lower().strip()
normalized_msg = normalize(message_body)
if any(phrase in normalized_msg for phrase in all_products_phrases):
logger.info(f"[Process] Detected 'all products' query: '{message_body}'")
await display_all_products(from_number)
return
# Get user context
user_context = context_manager.get_context(from_number)
current_state = user_context.get('current_state', 'main_menu')
# Update context with last message for intelligent responses
context_manager.update_context(from_number, last_message=message_body)
# Debug logging
logger.info(f"[Process] Current state: {current_state}, Message: '{message_body}' from {from_number}")
# Handle text messages
if not message_body:
return
# 🎯 LANGUAGE DETECTION FOR TEXT MESSAGES - STRICTLY ENGLISH OR URDU ONLY
reply_language = 'en' # Default to English
try:
detected_lang = detect(message_body)
logger.info(f"[Process] Raw detected language: {detected_lang}")
# STRICTLY ENGLISH OR URDU ONLY - REJECT ALL OTHER LANGUAGES
if detected_lang in ['en', 'ur']:
reply_language = detected_lang
logger.info(f"[Process] Valid language detected: {detected_lang}")
else:
# Reject any other language and force to English
reply_language = 'en'
logger.warning(f"[Process] Invalid language '{detected_lang}' detected - forcing to English")
# Check if text contains Urdu/Arabic characters or Islamic greetings
urdu_arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF\uFB50-\uFDFF\uFE70-\uFEFF]')
islamic_greetings = ['assalamu', 'assalam', 'salam', 'salaam', 'adaab', 'namaste', 'khuda', 'allah']
has_urdu_chars = bool(urdu_arabic_pattern.search(message_body))
has_islamic_greeting = any(greeting in message_body.lower() for greeting in islamic_greetings)
if has_urdu_chars or has_islamic_greeting:
detected_lang = 'ur'
reply_language = 'ur'
logger.info(f"[Process] Overriding language detection to Urdu due to Arabic/Urdu characters or Islamic greeting")
logger.info(f"[Process] Final language set to: {reply_language}")
except Exception as e:
logger.warning(f"[Process] Language detection failed: {e}, defaulting to English")
reply_language = 'en'
# Check for greetings with multilingual support
if is_greeting(message_body):
# Check if user is currently in AI chat mode - if so, don't trigger menu mode
if current_state == 'ai_chat_mode':
logger.info(f"[Process] Greeting detected in AI chat mode, treating as AI query: {message_body}")
# Treat greeting as a general query in AI chat mode
await handle_general_query_with_ai(from_number, message_body, user_context, reply_language)
return
else:
# Only trigger menu mode if not in AI chat mode
# Generate welcome message in detected language
if reply_language == 'ur':
welcome_msg = (
"🩺 *اپیکس بائیوٹیکل ویٹرنری اسسٹنٹ*\n\n"
"آپ کا خیر مقدم ہے! میں آپ کی ویٹرنری مصنوعات کے بارے میں مدد کر سکتا ہوں۔\n\n"
"📋 *مین مینو:*\n"
"1️⃣ مصنوعات تلاش کریں\n"
"2️⃣ زمرے براؤز کریں\n"
"3️⃣ کیٹلاگ ڈاؤن لوڈ کریں\n"
"4️⃣ اے آئی چیٹ موڈ\n\n"
"💬 اپنا انتخاب لکھیں یا 'main' لکھ کر مین مینو پر واپس جائیں۔"
)
else:
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()),
reply_language=reply_language
)
return
# 🎯 PRIORITY 1: Navigation commands - work from ANY state
# Check for "main" command - now works for both text and voice
if current_state != 'main_menu' and current_state != 'ai_chat_mode': # Only check for main if not already in main menu and not in AI chat mode
mapped_navigation = process_intelligent_voice_command(message_body, current_state, user_context)
if mapped_navigation == 'main':
logger.info(f"[Process] Navigation command detected: '{message_body}' -> 'main'")
# Generate welcome message in detected language
if reply_language == 'ur':
welcome_msg = (
"🩺 *اپیکس بائیوٹیکل ویٹرنری اسسٹنٹ*\n\n"
"آپ کا خیر مقدم ہے! میں آپ کی ویٹرنری مصنوعات کے بارے میں مدد کر سکتا ہوں۔\n\n"
"📋 *مین مینو:*\n"
"1️⃣ مصنوعات تلاش کریں\n"
"2️⃣ زمرے براؤز کریں\n"
"3️⃣ کیٹلاگ ڈاؤن لوڈ کریں\n"
"4️⃣ اے آئی چیٹ موڈ\n\n"
"💬 اپنا انتخاب لکھیں یا 'main' لکھ کر مین مینو پر واپس جائیں۔"
)
else:
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()),
reply_language=reply_language
)
return
# Also check for text-based navigation commands
if message_body.lower() in ['main', 'menu', 'start', 'home', 'back']:
# Generate welcome message in detected language
if reply_language == 'ur':
welcome_msg = (
"🩺 *اپیکس بائیوٹیکل ویٹرنری اسسٹنٹ*\n\n"
"آپ کا خیر مقدم ہے! میں آپ کی ویٹرنری مصنوعات کے بارے میں مدد کر سکتا ہوں۔\n\n"
"📋 *مین مینو:*\n"
"1️⃣ مصنوعات تلاش کریں\n"
"2️⃣ زمرے براؤز کریں\n"
"3️⃣ کیٹلاگ ڈاؤن لوڈ کریں\n"
"4️⃣ اے آئی چیٹ موڈ\n\n"
"💬 اپنا انتخاب لکھیں یا 'main' لکھ کر مین مینو پر واپس جائیں۔"
)
else:
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()),
reply_language=reply_language
)
return
# 🎯 PRIORITY 2: State-specific handling (contact_request, availability_request, ai_chat_mode, clarification)
if current_state == 'contact_request':
await handle_contact_request_response(from_number, message_body)
return
elif current_state == 'availability_request':
await handle_availability_request_response(from_number, message_body)
return
elif current_state == 'ai_chat_mode':
await handle_ai_chat_mode(from_number, message_body, reply_language)
return
elif user_context.get('awaiting_clarification', False):
# Handle clarification responses
await handle_clarification_response(from_number, message_body, user_context)
return
# 🎯 PRIORITY 3: Intelligent product queries from any menu state
# Check if the message is about a product from CSV, regardless of current menu
products = get_veterinary_product_matches(message_body)
if products:
logger.info(f"[Process] Product query detected from menu state '{current_state}': '{message_body}' -> Found {len(products)} products")
# If user is in a specific menu but asks about a product, handle it intelligently
if current_state in ['main_menu', 'category_selection_menu', 'category_products_menu', 'all_products_menu', 'product_inquiry', 'intelligent_products_menu']:
# Use intelligent product inquiry to handle the product query
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
return
else:
# For other menu states, still handle product queries but remind about menu context
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
return
# 🎯 PRIORITY 4: Menu selections - check if this is a valid menu selection for current state
if current_state in ['main_menu', 'category_selection_menu', 'category_products_menu', 'all_products_menu', 'product_inquiry', 'intelligent_products_menu']:
# Validate menu selection
is_valid, error_msg = validate_menu_selection(message_body, current_state, user_context)
if is_valid:
# Handle valid menu selection
if current_state == 'main_menu':
if message_body == '1':
# Search Products
await display_all_products(from_number)
elif message_body == '2':
# Browse Categories
categories = get_all_categories()
if categories:
context_manager.update_context(
from_number,
current_state='category_selection_menu',
current_menu='category_selection_menu',
current_menu_options=categories,
available_categories=categories
)
message = "📁 *Select a Category:*\n\n"
for i, category in enumerate(categories, 1):
message += f"{format_number_with_emoji(i)} {category}\n"
message += "\n💬 Type a category number or 'main' to return to main menu."
send_whatsjet_message(from_number, message)
else:
send_whatsjet_message(from_number, "❌ No categories available. Type 'main' to return to main menu.")
elif message_body == '3':
# Download Catalog
await send_catalog_pdf(from_number)
elif message_body == '4':
# AI Chat Mode
context_manager.update_context(
from_number,
current_state='ai_chat_mode',
current_menu='ai_chat_mode',
current_menu_options=['main'],
reply_language='ur'
)
message = (
"🤖 ویٹرنری ورچوئل اسسٹنٹ\n\n"
"آپ مجھ سے پوچھ سکتے ہیں:\n"
"* ویٹرنری سوالات\n"
"* پروڈکٹ کی سفارشات\n"
"* علاج کے مشورے\n"
"* عمومی معلومات\n\n"
"💬 'main' لکھ کر مین مینو پر واپس جائیں۔"
)
send_whatsjet_message(from_number, message)
elif current_state == 'category_selection_menu':
await handle_category_selection(message_body, from_number)
elif current_state == 'category_products_menu':
# Handle product selection from category
available_products = user_context.get('available_products', [])
if message_body.isdigit() and 1 <= int(message_body) <= len(available_products):
selected_product = available_products[int(message_body) - 1]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context, reply_language)
else:
send_whatsjet_message(from_number, get_menu_validation_message(current_state, user_context))
elif current_state == 'all_products_menu':
# Handle product selection from all products
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
if message_body.isdigit() and 1 <= int(message_body) <= len(all_products):
selected_product = all_products[int(message_body) - 1]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context, reply_language)
else:
send_whatsjet_message(from_number, get_menu_validation_message(current_state, user_context))
else:
send_whatsjet_message(from_number, "❌ No products available. Type 'main' to return to main menu.")
elif current_state == 'product_inquiry':
await handle_veterinary_product_followup(message_body, from_number)
elif current_state == 'intelligent_products_menu':
# Handle product selection from intelligent products menu
available_products = user_context.get('available_products', [])
if message_body.isdigit() and 1 <= int(message_body) <= len(available_products):
selected_product = available_products[int(message_body) - 1]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context, reply_language)
return
else:
# Check if the invalid input might be a product query
products = get_veterinary_product_matches(message_body)
if products:
logger.info(f"[Process] Invalid menu selection but product found: '{message_body}' -> Handling as product query")
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
return
else:
# Show menu validation message with guidance
send_whatsjet_message(from_number, get_menu_validation_message(current_state, user_context))
return
return # Exit after handling menu selection
# 🎯 PRIORITY 4: Product names - works from ANY menu state
# This ensures users can say product names like "hydropex", "respira aid plus", etc. from any menu
logger.info(f"[Process] Checking for product name in message: '{message_body}' from state: {current_state}")
products = get_veterinary_product_matches(message_body)
# --- IMPROVED LOGIC: Check for exact product name match first ---
normalized_input = normalize(message_body).lower().strip()
exact_match = None
# First, try to find exact product name match in the database
if products_df is not None and not products_df.empty:
for _, row in products_df.iterrows():
product_name = str(row.get('Product Name', '')).lower().strip()
normalized_product_name = normalize(product_name).lower().strip()
if normalized_product_name == normalized_input:
exact_match = row.to_dict()
logger.info(f"[Process] Exact product name match found: {exact_match.get('Product Name', 'Unknown')}")
break
if exact_match:
context_manager.update_context(
from_number,
current_product=exact_match,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
# Only send one reply: image+caption if possible, else text
await send_product_image_with_caption(from_number, exact_match, user_context, reply_language)
return
# --- END NEW LOGIC ---
if products:
logger.info(f"[Process] Product name detected: '{message_body}' -> Found {len(products)} products")
# Check if this is a specific product name search or a category/symptom search
is_specific_product = False
# Check for exact product name match (indicating specific product search)
normalized_input = normalize(message_body).lower().strip()
for product in products:
product_name = product.get('Product Name', '')
normalized_product_name = normalize(product_name).lower().strip()
if normalized_product_name == normalized_input:
is_specific_product = True
break
# If it's a specific product name, show only that product
if is_specific_product and len(products) == 1:
selected_product = products[0]
product_name = selected_product.get('Product Name', 'Unknown')
logger.info(f"[Process] Specific product found: {product_name}")
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
await send_product_image_with_caption(from_number, selected_product, user_context, reply_language)
return
# If it's a category/symptom search with multiple products, show all products
else:
logger.info(f"[Process] Category/symptom search with {len(products)} products")
# Use intelligent product inquiry to show all matching products
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
return
else:
# Use intelligent product inquiry for all non-found queries
await handle_intelligent_product_inquiry(from_number, message_body, user_context, reply_language)
return
except Exception as e:
logger.error(f"Error in process_incoming_message: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(from_number, current_state='main_menu', current_menu='main_menu', current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()))
async def handle_general_query_with_ai(from_number: str, query: str, user_context: dict, reply_language: str = 'en'):
"""Handle general queries with OpenAI intelligence"""
logger.info(f"[AI General] Processing query: '{query}' with language: {reply_language}")
try:
# Let OpenAI handle all queries intelligently first
if OPENAI_API_KEY and products_df is not None and not products_df.empty:
try:
# Get all products data for context
all_products = products_df.to_dict('records')
# Create comprehensive context for AI
products_context = ""
if all_products:
products_context = "Available Veterinary Products:\n"
for i, product in enumerate(all_products[:50], 1): # Limit to first 50 products for context
product_name = product.get('Product Name', 'N/A')
category = product.get('Category', 'N/A')
target_species = product.get('Target Species', 'N/A')
products_context += f"{i}. {product_name} - {category} ({target_species})\n"
# Enhanced AI prompt for intelligent query understanding
prompt = f"""
You are a professional veterinary product assistant for Apex Biotical, helping users on WhatsApp.
User Query: "{query}"
Available Products Database:
{products_context}
IMPORTANT INSTRUCTIONS:
1. FIRST, analyze if this is a COUNT query (asking for numbers, quantities, how many, etc.)
2. If it's a COUNT query:
- Determine if asking for TOTAL products or SPECIFIC category/products
- If TOTAL: Provide total count of all products and categories
- If SPECIFIC: Search the database for matching products and provide count with breakdown
- Always provide accurate numbers from the database
3. If it's NOT a count query:
- Handle as a general product inquiry
- List relevant products with descriptions
- Provide helpful veterinary advice
RESPONSE FORMAT:
- Be professional, concise, and helpful
- Use emojis for better readability
- Always include navigation instructions
- If count query: Show numbers clearly with category breakdown
- If product query: List products with brief descriptions
IMPORTANT: Always respond in a way that shows you understand the user's intent and provide accurate information from the database.
"""
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=500
)
ai_response = response.choices[0].message.content.strip()
# Ensure the response includes navigation instructions
if 'main' not in ai_response.lower():
if reply_language == 'ur':
ai_response += "\n\n💬 *براہ کرم 'main' لکھ کر مین مینو پر جائیں*"
else:
ai_response += "\n\n💬 *Please type 'main' to go to main menu*"
# Translate response if needed (ENGLISH/URDU ONLY)
if reply_language == 'ur':
try:
# Only translate from English to Urdu - no other languages
translated_response = GoogleTranslator(source='en', target='ur').translate(ai_response)
send_whatsjet_message(from_number, translated_response)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, ai_response)
else:
send_whatsjet_message(from_number, ai_response)
# Add to conversation history
context_manager.add_to_history(from_number, query, ai_response)
return
except Exception as e:
logger.error(f"[AI] Error handling query with OpenAI: {e}")
# Fall back to existing logic if OpenAI fails
pass
# Check if this is a non-product query that should get a simple response
non_product_keywords = ['what is', 'who are', 'where is', 'when', 'why', 'how to', 'can you', 'do you', 'is this', 'are you']
is_simple_query = any(keyword in query.lower() for keyword in non_product_keywords)
# Check for company-related queries
company_queries = ['apex', 'aapex', 'apex biotical', 'company', 'about', 'who are you', 'what are you']
is_company_query = any(keyword in query.lower() for keyword in company_queries)
# Check for irrelevant or unclear queries
irrelevant_keywords = ['weather', 'football', 'cricket', 'movie', 'music', 'food', 'restaurant', 'hotel', 'travel', 'shopping', 'fashion', 'beauty', 'sports', 'game', 'entertainment']
is_irrelevant_query = any(keyword in query.lower() for keyword in irrelevant_keywords)
if is_irrelevant_query:
response = get_irrelevant_query_response(query, user_context.get('current_state', 'main_menu'), reply_language)
send_whatsjet_message(from_number, response)
return
if is_company_query:
if reply_language == 'ur':
response = (
"🏥 *Apex Biotical Solutions*\n\n"
"ہم ایک پیشہ ور ویٹرنری فارماسیوٹیکل کمپنی ہیں جو مندرجہ ذیل میں مہارت رکھتے ہیں:\n\n"
"📦 *ہماری مصنوعات:*\n"
"• سانس کی مدد (Respira Aid Plus, Bromacid)\n"
"• جگر کی صحت (Heposel, Liverpex)\n"
"• مدافعتی نظام (EC-Immune)\n"
"• اینٹی بائیوٹکس (Tribiotic, Para C.E)\n"
"• وٹامنز اور سپلیمنٹس (Symodex, Adek Gold)\n\n"
"💬 *مصنوعات دیکھنے کے لیے:*\n"
"• 'main' لکھ کر مین مینو پر جائیں"
)
else:
response = (
"🏥 *Apex Biotical Solutions*\n\n"
"We are a leading veterinary pharmaceutical company specializing in:\n\n"
"📦 *Our Products:*\n"
"• Respiratory support (Respira Aid Plus, Bromacid)\n"
"• Liver health (Heposel, Liverpex)\n"
"• Immune system (EC-Immune)\n"
"• Antibiotics (Tribiotic, Para C.E)\n"
"• Vitamins & supplements (Symodex, Adek Gold)\n\n"
"🌍 *Our Focus:*\n"
"• Professional veterinary solutions\n"
"• Quality pharmaceutical products\n"
"• Comprehensive animal healthcare\n\n"
"💬 *To explore our products:*\n"
"• Type 'main' to see the main menu\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')"
)
send_whatsjet_message(from_number, response)
return
if not OPENAI_API_KEY:
if reply_language == 'ur':
send_whatsjet_message(from_number,
"❌ *AI assistance دستیاب نہیں ہے*\n\n💬 *براہ کرم 'main' لکھ کر مین مینو پر جائیں*")
else:
send_whatsjet_message(from_number,
"❌ AI assistance is not available. Please type 'main' for the menu.")
return
# Create context-aware prompt
current_state = user_context.get('current_state', 'main_menu')
current_product = user_context.get('current_product')
# Get all products data for context
all_products = []
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
# Create comprehensive context for AI
products_context = ""
if all_products:
products_context = "Available Veterinary Products:\n"
for i, product in enumerate(all_products[:30], 1): # Limit to first 30 products for context
product_name = product.get('Product Name', 'N/A')
category = product.get('Category', 'N/A')
products_context += f"{i}. {product_name} - {category}\n"
# Enhanced prompt for better responses
prompt = f"""
You are a professional veterinary product assistant for Apex Biotical, helping users on WhatsApp.
Always answer in a clear, accurate, and helpful manner.
User Query: "{query}"
Current State: {current_state}
Current Product: {current_product.get('Product Name', 'None') if current_product else 'None'}
Available Products:
{products_context}
IMPORTANT RULES:
1. If the user asks about products, list relevant products with brief descriptions
2. If the user asks general veterinary questions, provide concise, expert answers
3. If the query is unclear or not related to veterinary products, politely redirect to main menu
4. Keep responses professional, concise, and user-friendly
5. Always end with instructions to type 'main' to return to main menu
6. If the query seems like a test or unrelated question, provide a simple redirect response
Response Guidelines:
- Be professional and helpful
- Keep responses concise (max 3-4 sentences)
- Always include menu navigation instructions
- If unsure, redirect to main menu
- Focus on veterinary products and services only
"""
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=200 # Reduced for more concise responses
)
ai_response = response.choices[0].message.content.strip()
# Ensure the response includes navigation instructions
if 'main' not in ai_response.lower():
if reply_language == 'ur':
ai_response += "\n\n💬 *براہ کرم 'main' لکھ کر مین مینو پر جائیں*"
else:
ai_response += "\n\n💬 *Please type 'main' to go to main menu*"
# Translate response if needed (ENGLISH/URDU ONLY)
if reply_language == 'ur':
try:
# Only translate from English to Urdu - no other languages
translated_response = GoogleTranslator(source='en', target='ur').translate(ai_response)
send_whatsjet_message(from_number, translated_response)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, ai_response)
else:
send_whatsjet_message(from_number, ai_response)
# Add to conversation history
context_manager.add_to_history(from_number, query, ai_response)
except Exception as e:
logger.error(f"[AI] Error handling general query: {e}")
# Professional error response
if reply_language == 'ur':
error_msg = "❌ *خطا آ گئی ہے*\n\n💬 *براہ کرم 'main' لکھ کر مین مینو پر جائیں*"
else:
error_msg = "❌ *An error occurred*\n\n💬 *Please type 'main' to go to main menu*"
send_whatsjet_message(from_number, error_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_clarification_response(from_number: str, response: str, user_context: dict):
"""Handle user response to clarification questions"""
try:
clean_response = response.strip().lower()
if clean_response in ['yes', 'y', 'apex', 'apex biotical', 'apex biotical solution']:
# User confirmed they want Apex Biotical - provide company information
company_info = (
"🏥 *Apex Biotical Solutions*\n\n"
"We are a leading veterinary pharmaceutical company specializing in:\n\n"
"📦 *Our Products:*\n"
"• Respiratory support (Respira Aid Plus, Bromacid)\n"
"• Liver health (Heposel, Liverpex)\n"
"• Immune system (EC-Immune)\n"
"• Antibiotics (Tribiotic, Para C.E)\n"
"• Vitamins & supplements (Symodex, Adek Gold)\n\n"
"🌍 *Our Focus:*\n"
"• Professional veterinary solutions\n"
"• Quality pharmaceutical products\n"
"• Comprehensive animal healthcare\n\n"
"💬 *To explore our products:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to see the main menu\n"
"• Ask about specific symptoms or conditions"
)
send_whatsjet_message(from_number, company_info)
# Update context
user_context['awaiting_clarification'] = False
user_context.pop('clarification_product', None)
context_manager.update_context(from_number, **user_context)
else:
# User didn't confirm - use OpenAI for intelligent response
if OPENAI_API_KEY:
await handle_ai_chat_mode(from_number, response, 'en')
else:
send_whatsjet_message(from_number, "💬 *Type 'main' to go to main menu or ask another question.*")
# Clear clarification context
user_context['awaiting_clarification'] = False
user_context.pop('clarification_product', None)
context_manager.update_context(from_number, **user_context)
except Exception as e:
logger.error(f"[Clarification] Error: {str(e)}")
send_whatsjet_message(from_number, "❌ *An error occurred. Please type 'main' to go to main menu.*")
user_context['awaiting_clarification'] = False
user_context.pop('clarification_product', None)
context_manager.update_context(from_number, **user_context)
async def handle_contact_request(from_number: str):
"""Handle contact request"""
try:
message = (
"📞 *Contact Information*\n\n"
"Please provide your details:\n"
"• Name and location\n"
"• Phone number\n"
"• Specific inquiry\n\n"
"💬 *Example:* Dr. Ali - Multan - Need consultation for liver disease\n\n"
"💬 *Type 'main' to return to the main menu.*"
)
send_whatsjet_message(from_number, message)
context_manager.update_context(
from_number,
current_state='contact_request',
current_menu='contact_request',
current_menu_options=['Provide contact details']
)
except Exception as e:
logger.error(f"[Contact] Error handling contact request: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_contact_request_response(from_number: str, response: str):
"""Handle contact request response"""
try:
# Save contact inquiry
contact_data = {
'phone_number': from_number,
'inquiry': response,
'timestamp': datetime.now().isoformat()
}
# Ensure directory exists
os.makedirs('contacts', exist_ok=True)
with open('contacts/contact_inquiries.json', 'a', encoding='utf-8') as f:
f.write(json.dumps(contact_data, ensure_ascii=False) + '\n')
# Send inquiry to receiving number (admin)
receiving_number = "923102288328"
# Parse the response to separate name/location from details
response_lines = response.strip().split('\n')
if len(response_lines) >= 2:
name_location = response_lines[0].strip()
details = '\n'.join(response_lines[1:]).strip()
else:
# If only one line, assume it's all name/location
name_location = response.strip()
details = "No specific details provided"
inquiry_message = (
f"📞 *Follow Up Inquiry*\n\n"
f"Name and Location: {name_location}\n"
f"Phone: {from_number}\n"
f"Details: {details}"
)
send_whatsjet_message(receiving_number, inquiry_message)
# Send confirmation to user
send_whatsjet_message(from_number,
"✅ Thank you! Your inquiry has been received. Our team will contact you soon.\n\n"
"Type 'main' to return to the main menu.")
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
except Exception as e:
logger.error(f"[Contact] Error handling contact response: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_availability_inquiry(from_number: str, user_context: dict):
"""Handle availability inquiry"""
try:
current_product = user_context.get('current_product')
if current_product:
product_name = current_product.get('Product Name', 'N/A')
message = (
f"📦 *Availability Inquiry*\n\n"
f"Product: {product_name}\n\n"
"Please provide:\n"
"• Your name and location\n"
"• Required quantity\n"
"• Delivery preferences\n\n"
"💬 *Example:* Dr. Ali – Multan, 50 bottles\n\n"
"💬 *Type 'main' to return to the main menu.*"
)
send_whatsjet_message(from_number, message)
context_manager.update_context(
from_number,
current_state='availability_request',
current_menu='availability_request',
current_menu_options=['Provide availability details']
)
else:
send_whatsjet_message(from_number,
"❌ No product selected. Please search for a product first.")
except Exception as e:
logger.error(f"[Availability] Error handling availability inquiry: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
async def handle_availability_request_response(from_number: str, response: str):
"""Handle availability request response"""
try:
# Save availability inquiry
availability_data = {
'phone_number': from_number,
'inquiry': response,
'timestamp': datetime.now().isoformat()
}
# Ensure directory exists
os.makedirs('contacts', exist_ok=True)
with open('contacts/availability_inquiries.json', 'a', encoding='utf-8') as f:
f.write(json.dumps(availability_data, ensure_ascii=False) + '\n')
# Send inquiry to receiving number (admin)
receiving_number = "923102288328"
current_product = context_manager.get_context(from_number).get('current_product', {})
product_name = current_product.get('Product Name', 'N/A') if current_product else 'N/A'
# Parse the response to extract name/location, quantity, and delivery preferences
response_lines = [line.strip() for line in response.strip().split('\n') if line.strip()]
name_location = "Not provided"
quantity = "Not specified"
delivery_preferences = "Not specified"
if len(response_lines) >= 1:
name_location = response_lines[0]
if len(response_lines) >= 2:
quantity = response_lines[1]
if len(response_lines) >= 3:
delivery_preferences = response_lines[2]
inquiry_message = (
f"📦 *Product Availability Inquiry*\n\n"
f"Product: {product_name}\n"
f"Name and Location: {name_location}\n"
f"Quantity: {quantity}\n"
f"Delivery Preferences: {delivery_preferences}\n"
f"Phone: {from_number}"
)
send_whatsjet_message(receiving_number, inquiry_message)
# Send confirmation to user
send_whatsjet_message(from_number,
"✅ Thank you! Your availability inquiry has been received. Our sales team will contact you soon.\n\n"
"Type 'main' to return to the main menu.")
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
except Exception as e:
logger.error(f"[Availability] Error handling availability response: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
def send_helpful_guidance(from_number: str, current_state: str):
try:
if current_state == 'all_products_menu':
send_whatsjet_message(from_number,
"📋 *Products Menu*\n\n"
"Select a product number (1-23) to view detailed information.\n"
"Type 'main' to return to the main menu.\n"
"You can also type a product name to search.")
elif current_state == 'product_inquiry':
send_whatsjet_message(from_number,
"📦 *Product Details*\n\n"
"Select an option:\n"
"1️⃣ Contact Sales\n"
"2️⃣ Check Availability\n"
"3️⃣ Back to Main Menu\n"
"Type 'main' to return to main menu.")
elif current_state == 'category_selection_menu':
send_whatsjet_message(from_number,
"📁 *Category Selection*\n\n"
"Select a category number to view products.\n"
"Type 'main' to return to main menu.")
elif current_state == 'category_products_menu':
send_whatsjet_message(from_number,
"📦 *Category Products*\n\n"
"Select a product number to view details.\n"
"Type 'main' to return to main menu.")
elif current_state == 'contact_request':
send_whatsjet_message(from_number,
"📞 *Contact Request*\n\n"
"Please provide your name, location, and quantity.\n"
"Format: 'Name - Location, Quantity'\n"
"Example: 'Dr. Ali - Multan, 50 bottles'")
elif current_state == 'availability_request':
send_whatsjet_message(from_number,
"📦 *Availability Inquiry*\n\n"
"Please provide your location and quantity.\n"
"Format: 'Location, Quantity'\n"
"Example: 'Multan, 50 bottles'")
else:
send_whatsjet_message(from_number,
"💬 *Main Menu*\n\n"
"Available options:\n"
"1️⃣ Search Veterinary Products\n"
"2️⃣ Browse Categories\n"
"3️⃣ Download Catalog\n\n"
"Select an option or ask about specific products.")
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
except Exception as e:
logger.error(f"Error sending helpful guidance: {e}")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
def is_greeting(text):
"""
Enhanced greeting detection using fuzzy matching and universal patterns.
Can detect variations like "Hy", "Hii", "Hallo", etc. without hardcoding.
"""
if not text:
return False
text_lower = text.lower().strip()
# Core greeting patterns that can be extended with variations
core_greetings = {
'hello': ['hello', 'hallo', 'helo', 'hlo', 'hallo', 'heloo', 'helloo'],
'hi': ['hi', 'hy', 'hii', 'hiii', 'hiiii', 'hie', 'hye', 'hai', 'hay'],
'hey': ['hey', 'heyy', 'heyyy', 'heey', 'heeyy', 'hay', 'hae'],
'good_morning': ['good morning', 'goodmorning', 'gm', 'gud morning', 'gudmorning'],
'good_afternoon': ['good afternoon', 'goodafternoon', 'ga', 'gud afternoon', 'gudafternoon'],
'good_evening': ['good evening', 'goodevening', 'ge', 'gud evening', 'gudevening'],
'good_night': ['good night', 'goodnight', 'gn', 'gud night', 'gudnight'],
'morning': ['morning', 'mornin', 'morn'],
'afternoon': ['afternoon', 'aftrnoon', 'aftr'],
'evening': ['evening', 'evnin', 'evn'],
'night': ['night', 'nite', 'nyt'],
'how_are_you': ['how are you', 'how r u', 'how are u', 'how r you', 'howru', 'howru'],
'whats_up': ['whats up', 'whats up', 'what is up', 'wassup', 'wassup', 'sup', 'sup'],
'assalamu_alaikum': ['assalamu alaikum', 'assalam alaikum', 'assalamu alaikom', 'assalam alaikom', 'asalamu alaikum', 'asalam alaikum'],
'salam': ['salam', 'salaam', 'assalam', 'assalaam', 'salaam alaikum', 'salaam alaikom'],
'adaab': ['adaab', 'adaab arz hai', 'adaab arz', 'adaab arz karta hun'],
'namaste': ['namaste', 'namaskar', 'pranam', 'pranaam'],
'khuda_hafiz': ['khuda hafiz', 'allah hafiz', 'fi amanillah'],
'thank_you': ['thank you', 'thanks', 'shukriya', 'shukran', 'thnx', 'thx', 'tnx']
}
# Flatten all variations into a single list for fuzzy matching
all_greeting_variations = []
for variations in core_greetings.values():
all_greeting_variations.extend(variations)
# 1. Exact match check (fastest)
if text_lower in all_greeting_variations:
return True
# 2. Check for greeting patterns with common prefixes/suffixes
greeting_patterns = [
r'^(hi|hello|hey|hy|hii|hiii|hallo|helo|hlo|heyy|heyyy|heey|heeyy|hay|hae|hai|hye|hie)\s*$',
r'^(good\s+(morning|afternoon|evening|night)|gm|ga|ge|gn|gud\s+(morning|afternoon|evening|night))\s*$',
r'^(morning|afternoon|evening|night|mornin|morn|aftrnoon|aftr|evnin|evn|nite|nyt)\s*$',
r'^(how\s+(are\s+)?(you|u|r\s+u)|howru|howru)\s*$',
r'^(whats?\s+up|wassup|sup)\s*$',
r'^(assalamu?\s+alaik(um|om)|asalamu?\s+alaik(um|om)|salaam\s+alaik(um|om))\s*$',
r'^(salam|salaam|assalam|assalaam)\s*$',
r'^(adaab(?:\s+arz(?:\s+(hai|karta\s+hun))?)?)\s*$',
r'^(namaste|namaskar|pranam|pranaam)\s*$',
r'^(khuda\s+hafiz|allah\s+hafiz|fi\s+amanillah)\s*$',
r'^(thank\s+you|thanks|shukriya|shukran|thnx|thx|tnx)\s*$'
]
for pattern in greeting_patterns:
if re.match(pattern, text_lower):
return True
# 3. Fuzzy matching for typos and variations (using rapidfuzz)
# Set a high threshold to avoid false positives
FUZZY_THRESHOLD = 90 # Increased threshold to 90% for better precision
# Check against all greeting variations
for greeting in all_greeting_variations:
# Use ratio for overall similarity
similarity = fuzz.ratio(text_lower, greeting)
if similarity >= FUZZY_THRESHOLD:
logger.info(f"Fuzzy greeting match: '{text_lower}' -> '{greeting}' (similarity: {similarity}%)")
return True
# 4. Check for greeting questions
greeting_questions = [
'how are you', 'how r u', 'how are u', 'how do you do', 'how\'s it going',
'how is it going', 'how\'s everything', 'how is everything',
'what\'s up', 'whats up', 'what is up', 'how\'s life', 'how is life',
'آپ کیسے ہیں', 'آپ کیسے ہو', 'کیسے ہیں', 'کیسے ہو', 'کیا حال ہے', 'کیسا ہے'
]
for question in greeting_questions:
if question in text_lower:
return True
# 5. Check for greeting with common modifiers
greeting_modifiers = ['there', 'everyone', 'all', 'guys', 'folks', 'people']
words = text_lower.split()
if len(words) >= 2:
first_word = words[0]
remaining_words = words[1:]
# Check if first word is a greeting and remaining words are modifiers
for greeting in all_greeting_variations:
if fuzz.ratio(first_word, greeting) >= FUZZY_THRESHOLD:
# Check if remaining words are all modifiers
if all(word in greeting_modifiers for word in remaining_words):
return True
# 6. Special case: Very short messages that are likely greetings
if len(text_lower) <= 4 and len(text_lower) >= 2:
# Check if it's a very short greeting-like word
short_greetings = ['hi', 'hy', 'hii', 'hey', 'heyy', 'hay', 'hae', 'hai', 'hye', 'hie']
for short_greeting in short_greetings:
if fuzz.ratio(text_lower, short_greeting) >= 85: # Lower threshold for short words
logger.info(f"Short greeting match: '{text_lower}' -> '{short_greeting}'")
return True
# 7. Additional safety check: Avoid false positives for common non-greeting words
# that might have high similarity to greetings
non_greeting_words = [
'help', 'here', 'her', 'his', 'him', 'hot', 'how', 'history', 'high',
'hint', 'hit', 'hill', 'hire', 'a', 'b', 'c', 'what', 'when', 'where', 'why'
]
# If the text is exactly one of these words, it's not a greeting
if text_lower in non_greeting_words:
return False
# 8. Check for product/inquiry keywords that indicate non-greeting intent
inquiry_keywords = [
'need', 'want', 'looking', 'find', 'show', 'tell', 'give', 'products',
'medicine', 'antibiotics', 'veterinary', 'animals', 'cattle', 'poultry',
'catalog', 'price', 'availability', 'consultation', 'appointment',
'main', 'menu', 'start', 'home', 'back', '1', '2', '3', '4', '5'
]
# If any inquiry keyword is present, it's likely not just a greeting
for keyword in inquiry_keywords:
if keyword in text_lower:
return False
return False
async def handle_ai_chat_mode(from_number: str, query: str, reply_language: str = 'en'):
"""
Handle AI chat mode - completely separate from menu system
Uses OpenAI to provide intelligent responses based on CSV data
"""
# Force Urdu replies for Option 4
reply_language = 'ur'
logger.info(f"[AI Chat] Forcing reply_language to Urdu for Option 4.")
try:
logger.info(f"[AI Chat] Processing query: '{query}' for {from_number} in {reply_language}")
# Check for navigation commands first
if query.lower().strip() in ['main', 'menu', 'start', 'home', 'back']:
logger.info(f"[AI Chat] Navigation command detected: '{query}' -> returning to main menu")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# Check for greetings - return to main menu
if is_greeting(query):
logger.info(f"[AI Chat] Greeting detected: '{query}' -> returning to main menu")
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
# Check if OpenAI is available
if not OPENAI_API_KEY:
if reply_language == 'ur':
send_whatsjet_message(from_number, "❌ AI Assistant requires OpenAI API. Please contact support.")
else:
send_whatsjet_message(from_number, "❌ AI Assistant requires OpenAI API. Please contact support.")
return
# Get all products data for context
all_products = []
if products_df is not None and not products_df.empty:
all_products = products_df.to_dict('records')
# Create comprehensive context for AI
products_context = ""
if all_products:
products_context = "Available Veterinary Products:\n"
for i, product in enumerate(all_products[:50], 1): # Limit to first 50 products for context
product_name = product.get('Product Name', 'N/A')
category = product.get('Category', 'N/A')
composition = product.get('Composition', 'N/A')
target_species = product.get('Target Species', 'N/A')
products_context += f"{i}. {product_name} - {category}\n"
products_context += f" Composition: {composition}\n"
products_context += f" Target Species: {target_species}\n\n"
# Create AI prompt
if reply_language == 'ur':
prompt = f"""
آپ Apex Biotical کے Veterinary AI Assistant ہیں۔ آپ کو veterinary products اور treatments کے بارے میں معلومات فراہم کرنی ہیں۔
یوزر کا سوال: {query}
دستیاب veterinary products:
{products_context}
براہ کرم:
1. یوزر کے سوال کا جواب دیں
2. اگر یہ veterinary products سے متعلق ہے تو relevant products کی معلومات دیں
3. اگر یہ general veterinary advice ہے تو professional guidance دیں
4. اردو میں جواب دیں
5. جواب professional اور helpful ہو
جواب:
"""
else:
prompt = f"""
You are Apex Biotical's Veterinary AI Assistant. You provide information about veterinary products and treatments.
User Query: {query}
Available Veterinary Products:
{products_context}
Please:
1. Answer the user's question
2. If it's related to veterinary products, provide relevant product information
3. If it's general veterinary advice, provide professional guidance
4. Answer in English
5. Keep the response professional and helpful
Response:
"""
# Get AI response
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=500
)
ai_response = response.choices[0].message.content.strip()
# Add instructions for returning to main menu
if reply_language == 'ur':
ai_response += "\n\n💬 *Type 'main' to return to main menu*"
else:
ai_response += "\n\n💬 *Type 'main' to return to main menu*"
# Translate response if needed (ENGLISH/URDU ONLY)
if reply_language == 'ur':
try:
# Get all product and category names
product_names = [str(p.get('Product Name', '')) for p in all_products if p.get('Product Name')]
category_names = list(set([str(p.get('Category', '')) for p in all_products if p.get('Category')]))
# Only translate from English to Urdu - no other languages
translated_response = GoogleTranslator(source='en', target='ur').translate(ai_response)
# Restore English terms
translated_response = restore_english_terms(translated_response, ai_response, product_names, category_names)
send_whatsjet_message(from_number, translated_response)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, ai_response)
else:
send_whatsjet_message(from_number, ai_response)
# Update context to AI chat mode
context_manager.update_context(
from_number,
current_state='ai_chat_mode',
current_menu='ai_chat_mode',
current_menu_options=['main'],
last_ai_query=query,
last_ai_response=ai_response
)
# Add to conversation history
context_manager.add_to_history(from_number, query, ai_response)
logger.info(f"[AI Chat] Response sent successfully to {from_number}")
except Exception as e:
logger.error(f"[AI Chat] Error processing query: {e}")
if reply_language == 'ur':
error_msg = "❌ AI Assistant میں error آ گیا ہے۔ براہ کرم دوبارہ کوشش کریں یا 'main' لکھ کر main menu پر واپس جائیں۔"
else:
error_msg = "❌ AI Assistant encountered an error. Please try again or type 'main' to return to main menu."
send_whatsjet_message(from_number, error_msg)
# Load products on startup
def load_products_data():
"""Load products data from CSV file"""
global products_df
try:
if os.path.exists(CSV_FILE):
products_df = pd.read_csv(CSV_FILE)
logger.info(f"✅ Loaded {len(products_df)} products from {CSV_FILE}")
else:
logger.warning(f"⚠️ CSV file {CSV_FILE} not found")
products_df = pd.DataFrame()
except Exception as e:
logger.error(f"❌ Error loading products data: {e}")
products_df = pd.DataFrame()
load_products_data()
# Add these functions after the existing imports and before the main functions
def get_product_image_path(product_name: str) -> str:
"""
Get the cPanel image URL for a product based on its name.
Only uses cPanel public URL format: https://amgocus.com/uploads/images/<normalized_name>.<ext>
Normalized: lowercase, remove spaces/underscores/dots, preserve dashes.
"""
try:
def normalize(name):
return re.sub(r'[\s_\.]', '', name).lower()
normalized_name = normalize(product_name)
logger.info(f"[Image] Normalized product name: '{product_name}' -> '{normalized_name}'")
image_extensions = ['.png', '.jpg', '.jpeg', '.webp']
base_url = "https://amgocus.com/uploads/images/"
# Check for all possible extensions
for ext in image_extensions:
image_url = f"{base_url}{normalized_name}{ext}"
logger.info(f"[Image] Checking cPanel image URL: {image_url}")
# For cPanel URLs, assume they are accessible if they start with http
if image_url.startswith('http'):
logger.info(f"[Image] Found cPanel image URL: {image_url}")
return image_url
# Fallback: try original name with spaces as %20
safe_name = product_name.strip().replace(' ', '%20')
for ext in image_extensions:
image_url = f"{base_url}{safe_name}{ext}"
logger.info(f"[Image] Checking fallback cPanel image URL: {image_url}")
if image_url.startswith('http'):
logger.info(f"[Image] Found cPanel image URL (fallback): {image_url}")
return image_url
logger.warning(f"[Image] No cPanel image found for product: {product_name}")
return None
except Exception as e:
logger.error(f"[Image] Error generating cPanel image URL for {product_name}: {e}")
return None
def get_product_image_media_type(image_path: str) -> str:
"""
Determine the media type based on file extension
"""
if not image_path:
return None
ext = os.path.splitext(image_path)[1].lower()
media_type_map = {
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png',
'.webp': 'image/webp',
'.gif': 'image/gif'
}
return media_type_map.get(ext, 'image/jpeg')
async def send_product_with_image(from_number: str, product: Dict[str, Any], user_context: Dict[str, Any]):
"""
Send product information with image if available
"""
try:
product_name = product.get('Product Name', 'Unknown Product')
# Generate product response
response = generate_veterinary_product_response(product, user_context)
# Try to get product image
image_path = get_product_image_path(product_name)
if image_path and os.path.exists(image_path):
# Send product info with image
media_type = get_product_image_media_type(image_path)
filename = f"{product_name.replace(' ', '_')}.jpg"
success = send_whatsjet_message(
from_number,
response,
media_type=media_type,
media_path=image_path,
filename=filename
)
if success:
logger.info(f"[Product] Successfully sent product with image: {product_name}")
else:
# Fallback to text-only if image send fails
logger.warning(f"[Product] Failed to send image, sending text only: {product_name}")
send_whatsjet_message(from_number, response)
else:
# Send text-only response
send_whatsjet_message(from_number, response)
logger.info(f"[Product] Sent product info without image: {product_name}")
except Exception as e:
logger.error(f"[Product] Error sending product with image: {e}")
# Fallback to text-only
response = generate_veterinary_product_response(product, user_context)
send_whatsjet_message(from_number, response)
async def send_enhanced_pdf(from_number: str, product: Dict[str, Any], pdf_content: bytes = None):
"""
Send PDF with enhanced formatting and proper WhatsApp document sharing
"""
try:
product_name = product.get('Product Name', 'Unknown_Product')
safe_name = re.sub(r'[^\w\s-]', '', product_name).replace(' ', '_')
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{safe_name}_Product_Info_{timestamp}.pdf"
# Generate PDF if not provided
if pdf_content is None:
pdf_content = generate_veterinary_pdf(product)
# Save PDF to uploads directory
uploads_dir = "uploads"
os.makedirs(uploads_dir, exist_ok=True)
pdf_path = os.path.join(uploads_dir, filename)
with open(pdf_path, 'wb') as f:
f.write(pdf_content)
# Send PDF as document via WhatsApp
success = send_whatsjet_message(
from_number,
f"📄 *{product_name} - Detailed Product Information*\n\n"
f"📎 Here's the complete product information in PDF format.\n"
f"📋 Includes: Composition, Dosage, Precautions, Storage\n\n"
f"💬 Type 'main' to return to main menu.",
media_type="application/pdf",
media_path=pdf_path,
filename=filename
)
if success:
logger.info(f"[PDF] Successfully sent PDF for product: {product_name}")
else:
# Fallback: Send download link
server_url = os.getenv("SERVER_URL", "https://your-huggingface-space-url.hf.space")
download_url = f"{server_url}/uploads/{filename}"
message = (
f"📄 *{product_name} - Product Information*\n\n"
f"📎 [Download Product PDF]({download_url})\n\n"
f"💬 *Click the link above to download the detailed product information*\n"
f"Type 'main' to return to main menu."
)
send_whatsjet_message(from_number, message)
logger.info(f"[PDF] Sent PDF download link for product: {product_name}")
except Exception as e:
logger.error(f"[PDF] Error sending enhanced PDF: {e}")
# Fallback to basic text response
response = generate_veterinary_product_response(product, {})
send_whatsjet_message(from_number, response)
# Enhanced product response function with image support
def generate_veterinary_product_response_with_media(product_info: Dict[str, Any], user_context: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate comprehensive veterinary product response with media information
Returns a dictionary with text response and media info
"""
def clean_text(text):
if pd.isna(text) or text is None:
return "Not specified"
cleaned = str(text).strip()
# Apply special character cleaning
cleaned = clean_special_characters(cleaned)
return cleaned
product_name = clean_text(product_info.get('Product Name', ''))
product_type = clean_text(product_info.get('Type', ''))
category = clean_text(product_info.get('Category', ''))
indications = clean_text(product_info.get('Indications', ''))
pdf_link = ""
try:
csv_data = pd.read_csv('Veterinary.csv')
product_row = csv_data[csv_data['Product Name'] == product_name]
if not product_row.empty:
brochure_link = product_row.iloc[0].get('Brochure (PDF)', '')
if pd.notna(brochure_link) and brochure_link.strip():
pdf_link = brochure_link.strip()
except Exception as e:
logger.warning(f"Error checking PDF link for {product_name}: {e}")
response_text = f"""🧪 *Name:* {product_name}\n📦 *Type:* {product_type}\n🏥 *Category:* {category}\n💊 *Used For:* {indications}"""
if pdf_link:
response_text += f"\n\n📄 Product Brochure Available\n🔗 {product_name} PDF:\n{pdf_link}"
response_text += f"""
\n💬 *Available Actions:*
1️⃣ Talk to Veterinary Consultant
2️⃣ Inquire About Availability
3️⃣ Back to Main Menu
\n💬 Select an option or ask about related products"""
image_path = get_product_image_path(product_name)
has_image = image_path is not None and os.path.exists(image_path)
return {
'text': response_text,
'has_image': has_image,
'image_path': image_path,
'product_name': product_name
}
def ensure_images_dir():
"""Ensure the images directory exists"""
images_dir = "static/images"
os.makedirs(images_dir, exist_ok=True)
logger.info(f"[Image] Ensured images directory exists: {images_dir}")
# New feature: Send product image with caption (product details)
async def send_product_image_with_caption(from_number: str, product: Dict[str, Any], user_context: Dict[str, Any], reply_language: str = 'en'):
"""
Send product image (if available) with product details as caption in a single WhatsApp message.
Only uses cPanel images from https://amgocus.com/uploads/images/
If image is not available, send only the product details as text.
"""
ensure_images_dir()
product_name = product.get('Product Name', 'Unknown Product')
details = generate_veterinary_product_response(product, user_context, reply_language)
logger.info(f"[Product] Processing cPanel image for product: {product_name}")
try:
# Get cPanel image URL for the product
image_url = get_product_image_path(product_name)
if image_url and image_url.startswith('http'):
logger.info(f"[Product] Found cPanel image URL: {image_url}")
# Test if the cPanel image URL is accessible
try:
logger.info(f"[Product] Testing cPanel image URL accessibility: {image_url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
test_response = requests.head(image_url, headers=headers, timeout=10, allow_redirects=True)
if test_response.status_code != 200:
logger.warning(f"[Product] cPanel image URL not accessible (status {test_response.status_code}): {image_url}")
raise Exception(f"cPanel image URL not accessible: {test_response.status_code}")
logger.info(f"[Product] cPanel image URL is accessible")
except Exception as e:
logger.warning(f"[Product] Failed to test cPanel image URL {image_url}: {e}")
image_url = None
# Send image with caption using the correct WhatsJet API
if image_url:
logger.info(f"[Product] Attempting to send cPanel image with caption for: {product_name}")
# Use the correct WhatsJet media endpoint with caption
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-media-message"
headers = {
"Authorization": f"Bearer {WHATSJET_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"phone_number": from_number,
"media_type": "image",
"media_url": image_url,
"caption": details,
"file_name": f"{product_name.replace(' ', '_')}.jpg"
}
try:
logger.info(f"[Product] Sending image with caption using WhatsJet API: {payload}")
response = httpx.post(url, json=payload, headers=headers, timeout=30)
logger.info(f"[Product] WhatsJet response status: {response.status_code}")
logger.info(f"[Product] WhatsJet response body: {response.text[:500]}...")
if response.status_code == 200:
logger.info(f"[Product] Successfully sent cPanel image with caption for product: {product_name}")
return
else:
logger.warning(f"[Product] Failed to send image with caption, trying separate messages: {product_name}")
# Fallback to separate messages
image_success = send_whatsjet_media_image_only(from_number, image_url, f"{product_name.replace(' ', '_')}.jpg")
if image_success:
await asyncio.sleep(1)
send_whatsjet_message(from_number, details)
return
else:
logger.warning(f"[Product] Failed to send cPanel image, sending text only: {product_name}")
except Exception as e:
logger.error(f"[Product] Error sending image with caption: {e}")
# Fallback to separate messages
image_success = send_whatsjet_media_image_only(from_number, image_url, f"{product_name.replace(' ', '_')}.jpg")
if image_success:
await asyncio.sleep(1)
send_whatsjet_message(from_number, details)
return
else:
logger.warning(f"[Product] Failed to send cPanel image, sending text only: {product_name}")
# No cPanel image available, send text only
logger.info(f"[Product] No cPanel image available, sending text only for: {product_name}")
send_whatsjet_message(from_number, details)
except Exception as e:
logger.error(f"[Product] Error sending product image with caption: {e}")
logger.info(f"[Product] Falling back to text-only message for: {product_name}")
send_whatsjet_message(from_number, details)
# Test endpoint for product image with caption
@app.get("/test-product-image-with-caption")
async def test_product_image_with_caption(phone: str):
"""Test endpoint for sending product image with caption"""
try:
if products_df is None or products_df.empty:
return {"error": "No products loaded"}
# Get first product for testing
product = products_df.iloc[0].to_dict()
user_context = {}
await send_product_image_with_caption(phone, product, user_context, 'en')
return {
"success": True,
"message": f"Test product image sent to {phone}",
"product": product.get('Product Name', 'Unknown')
}
except Exception as e:
logger.error(f"Error in test product image with caption: {e}")
return {"error": str(e)}
# Test endpoint for image sending
@app.get("/test-image-sending")
async def test_image_sending(phone: str, image_url: str = "https://amgocus.com/uploads/images/respiraaidplus.png"):
"""Test endpoint for sending images via WhatsApp"""
try:
filename = "test_image.jpg"
success = send_whatsjet_message(
phone,
"🖼️ *Test Image*\n\nThis is a test image sent via WhatsApp API.",
media_type="image/jpeg",
media_path=image_url,
filename=filename
)
if success:
return {
"success": True,
"message": f"Test image sent successfully to {phone}",
"image_url": image_url
}
else:
return {
"success": False,
"message": f"Failed to send test image to {phone}",
"image_url": image_url
}
except Exception as e:
logger.error(f"Error in test image sending: {e}")
return {"error": str(e)}
# Debug endpoint for WhatsJet
@app.get("/debug-whatsjet")
async def debug_whatsjet():
"""Debug endpoint to check WhatsJet configuration"""
try:
config = {
"api_url": WHATSJET_API_URL,
"vendor_uid": WHATSJET_VENDOR_UID,
"api_token": "***" if WHATSJET_API_TOKEN else None,
"server_url": SERVER_URL,
"openai_key": "***" if OPENAI_API_KEY else None
}
return {
"status": "success",
"config": config,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}
# Test endpoint for WhatsJet payloads
@app.get("/test-whatsjet-payloads")
async def test_whatsjet_payloads(phone: str):
"""Test endpoint to check WhatsJet payloads"""
try:
# Test basic message sending
test_message = "🧪 *WhatsJet Test*\n\nThis is a test message to verify WhatsJet integration."
success = send_whatsjet_message(phone, test_message)
return {
"status": "success" if success else "failed",
"message": f"WhatsJet test message sent to {phone}",
"success": success,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}
# Test endpoint for cPanel image access
@app.get("/test-cpanel-image-access")
async def test_cpanel_image_access():
"""
Test endpoint to check if cPanel image URLs are now accessible with browser-like headers.
"""
try:
image_url = "https://amgocus.com/uploads/images/Respira%20Aid%20Plus.jpg"
# Test with browser-like headers
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
logger.info(f"[Test] Testing cPanel image URL with browser headers: {image_url}")
response = requests.get(image_url, headers=headers, timeout=10, stream=True, allow_redirects=True)
result = {
"image_url": image_url,
"status_code": response.status_code,
"headers": dict(response.headers),
"accessible": response.status_code == 200,
"timestamp": datetime.now().isoformat()
}
if response.status_code == 200:
logger.info(f"[Test] ✅ cPanel image URL is now accessible!")
else:
logger.warning(f"[Test] ❌ cPanel image URL still not accessible (status {response.status_code})")
return result
except Exception as e:
logger.error(f"[Test] Error testing cPanel image access: {e}")
return {
"error": str(e),
"image_url": image_url,
"timestamp": datetime.now().isoformat()
}
def format_number_with_emoji(number: int) -> str:
"""Format number with emoji"""
emoji_map = {
1: "1️⃣", 2: "2️⃣", 3: "3️⃣", 4: "4️⃣", 5: "5️⃣",
6: "6️⃣", 7: "7️⃣", 8: "8️⃣", 9: "9️⃣", 10: "🔟",
11: "1️⃣1️⃣", 12: "1️⃣2️⃣", 13: "1️⃣3️⃣", 14: "1️⃣4️⃣", 15: "1️⃣5️⃣",
16: "1️⃣6️⃣", 17: "1️⃣7️⃣", 18: "1️⃣8️⃣", 19: "1️⃣9️⃣", 20: "2️⃣0️⃣",
21: "2️⃣1️⃣", 22: "2️⃣2️⃣", 23: "2️⃣3️⃣"
}
return emoji_map.get(number, f"{number}.")
async def display_all_products(from_number: str):
"""Display all products in multiple messages and update menu context"""
try:
user_context = context_manager.get_context(from_number)
current_state = user_context.get('current_state', 'main_menu')
logger.info(f"[Display] display_all_products called for {from_number} in state: {current_state}")
if current_state == 'all_products_menu':
logger.warning(f"[Display] Already in all_products_menu state for {from_number}, skipping display")
return
if products_df is None or products_df.empty:
send_whatsjet_message(from_number, "❌ No products available at the moment.")
return
# Set state to all_products_menu and store menu context
products = products_df.to_dict('records')
context_manager.update_context(
from_number,
current_state='all_products_menu',
current_menu='all_products_menu',
current_menu_options=[p.get('Product Name', 'Unknown') for p in products],
available_products=products
)
logger.info(f"[Display] Set state to all_products_menu for {from_number}")
# Send products in chunks
chunk_size = 5
for i in range(0, len(products), chunk_size):
chunk = products[i:i + chunk_size]
message = f"📋 *Products List ({i+1}-{min(i+chunk_size, len(products))} of {len(products)})*\n\n"
for j, product in enumerate(chunk, i+1):
message += f"{format_number_with_emoji(j)} {product.get('Product Name', 'Unknown')}\n"
if product.get('Category'):
message += f" Category: {product.get('Category')}\n"
message += "\n"
send_whatsjet_message(from_number, message)
send_whatsjet_message(from_number,
"💬 Type a product name to get detailed information, or type 'main' to return to main menu.")
except Exception as e:
logger.error(f"[Display] Error displaying products: {e}")
send_whatsjet_message(from_number, "❌ Error displaying products. Please try again.")
def get_all_categories():
"""Return a list of all unique categories from the products DataFrame"""
if products_df is not None and not products_df.empty:
return list(products_df['Category'].unique())
return []
def get_products_by_category(category: str):
"""Get products by category"""
if products_df is None or products_df.empty:
return []
category_products = products_df[products_df['Category'] == category]
return category_products.to_dict('records')
async def handle_category_selection(selection: str, from_number: str):
"""Handle category selection"""
try:
user_context = context_manager.get_context(from_number)
available_categories = user_context.get('available_categories', [])
if selection.isdigit() and 1 <= int(selection) <= len(available_categories):
selected_category = available_categories[int(selection) - 1]
products = get_products_by_category(selected_category)
if products:
# Update context with category products
context_manager.update_context(
from_number,
current_category=selected_category,
current_state='category_products_menu',
current_menu='category_products_menu',
current_menu_options=[p.get('Product Name', 'Unknown') for p in products],
available_products=products
)
# Send category products
message = f"📦 *Products in {selected_category}*\n\n"
for i, product in enumerate(products, 1):
message += f"{format_number_with_emoji(i)} {product.get('Product Name', 'Unknown')}\n"
if product.get('Target Species'):
message += f" Target: {product.get('Target Species')}\n"
message += "\n"
message += "💬 Select a product number or type 'main' to return to main menu."
send_whatsjet_message(from_number, message)
else:
send_whatsjet_message(from_number, f"❌ No products found in {selected_category} category.")
else:
send_whatsjet_message(from_number, "❌ Invalid selection. Please choose a valid category number.")
except Exception as e:
logger.error(f"[Category] Error handling category selection: {e}")
send_helpful_guidance(from_number, 'category_selection_menu')
def get_menu_validation_message(current_state: str, user_context: dict) -> str:
"""Get professional validation message for current menu state"""
if current_state == 'main_menu':
return (
"⚠️ *Invalid Selection*\n\n"
"Please select a valid option from the main menu:\n\n"
"📋 *Available Options:*\n"
"1️⃣ Search Veterinary Products\n"
"2️⃣ Browse Categories\n"
"3️⃣ Download Catalog\n"
"4️⃣ Chat with Veterinary AI Assistant\n\n"
"💡 *Quick Actions:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to refresh the menu\n"
"• Ask about symptoms or categories"
)
elif current_state == 'all_products_menu':
if products_df is not None and not products_df.empty:
total_products = len(products_df)
return (
f"⚠️ *Invalid Product Selection*\n\n"
f"Please choose a product number between 1 and {total_products}.\n\n"
"💡 *Alternative Options:*\n"
"• Type a specific product name (e.g., 'hydropex')\n"
"• Type 'main' to return to main menu\n"
"• Ask about product categories"
)
else:
return (
"⚠️ *No Products Available*\n\n"
"Currently no products are loaded in the system.\n\n"
"💡 *Please:*\n"
"• Type 'main' to return to main menu\n"
"• Contact support if this issue persists"
)
elif current_state == 'category_products_menu':
available_products = user_context.get('available_products', [])
if available_products:
return (
f"⚠️ *Invalid Product Selection*\n\n"
f"Please choose a product number between 1 and {len(available_products)}.\n\n"
"💡 *Alternative Options:*\n"
"• Type a specific product name\n"
"• Type 'main' to return to main menu\n"
"• Browse other categories"
)
else:
return (
"⚠️ *No Products in Category*\n\n"
"This category currently has no available products.\n\n"
"💡 *Please:*\n"
"• Type 'main' to return to main menu\n"
"• Browse other categories\n"
"• Ask about specific products"
)
elif current_state == 'category_selection_menu':
available_categories = user_context.get('available_categories', [])
if available_categories:
return (
f"⚠️ *Invalid Category Selection*\n\n"
f"Please choose a category number between 1 and {len(available_categories)}.\n\n"
"💡 *Alternative Options:*\n"
"• Type a specific product name\n"
"• Type 'main' to return to main menu\n"
"• Ask about product types"
)
else:
return (
"⚠️ *No Categories Available*\n\n"
"Currently no product categories are available.\n\n"
"💡 *Please:*\n"
"• Type 'main' to return to main menu\n"
"• Ask about specific products\n"
"• Contact support if needed"
)
elif current_state == 'product_inquiry':
return (
"⚠️ *Invalid Selection*\n\n"
"Please choose a valid option for this product:\n\n"
"📋 *Available Actions:*\n"
"1️⃣ Talk to Veterinary Consultant\n"
"2️⃣ Inquire About Availability\n"
"3️⃣ Back to Main Menu\n\n"
"💡 *Alternative Options:*\n"
"• Type another product name\n"
"• Type 'main' to return to main menu\n"
"• Ask about related products"
)
elif current_state == 'intelligent_products_menu':
available_products = user_context.get('available_products', [])
return (
f"⚠️ *Invalid Product Selection*\n\n"
f"Please choose a product number between 1 and {len(available_products)}.\n\n"
"💡 *Alternative Options:*\n"
"• Type a specific product name\n"
"• Type 'main' to return to main menu\n"
"• Ask about different categories"
)
else:
return (
"⚠️ *Invalid Selection*\n\n"
"Please choose a valid option or type 'main' to return to main menu.\n\n"
"💡 *Helpful Options:*\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"• Type 'main' to return to main menu\n"
"• Ask about veterinary products or categories"
)
def is_valid_menu_selection(selection: str, current_state: str, user_context: dict) -> bool:
"""Check if selection is valid for current menu state"""
is_valid, _ = validate_menu_selection(selection, current_state, user_context)
return is_valid
def get_irrelevant_query_response(query: str, current_state: str, reply_language: str = 'en') -> str:
"""Get professional response for irrelevant or unclear queries"""
if reply_language == 'ur':
return (
"🤖 *Apex Biotical Veterinary Assistant*\n\n"
"آپ کا سوال واضح نہیں ہے یا یہ ویٹرنری مصنوعات سے متعلق نہیں ہے۔\n\n"
"💡 *میں آپ کی مدد کر سکتا ہوں:*\n"
"• ویٹرنری مصنوعات کے بارے میں معلومات\n"
"• مصنوعات کی تلاش اور براؤز\n"
"• ویٹرنری مشورے اور رہنمائی\n"
"• مصنوعات کی دستیابی کے بارے میں پوچھنا\n\n"
"📋 *مثال کے طور پر:*\n"
"• 'hydropex کے بارے میں بتائیں'\n"
"• 'سانس کی مصنوعات کون سی ہیں؟'\n"
"• 'main' لکھ کر مین مینو پر جائیں"
)
else:
return (
"🤖 *Apex Biotical Veterinary Assistant*\n\n"
"I'm here to help you with veterinary products and information. "
"Your query doesn't seem to be related to our veterinary services.\n\n"
"💡 *I can help you with:*\n"
"• Information about veterinary products\n"
"• Product search and browsing\n"
"• Veterinary advice and guidance\n"
"• Product availability inquiries\n\n"
"📋 *Examples of what you can ask:*\n"
"• 'Tell me about hydropex'\n"
"• 'What respiratory products do you have?'\n"
"• 'Show me all antibiotics'\n"
"• Type 'main' to return to main menu"
)
def generate_veterinary_welcome_message(phone_number=None, user_context=None):
"""Generate veterinary welcome message"""
return (
"🏥 Welcome to Apex Biotical Solutions Veterinary Virtual Assistant\n\n"
"How can I help you today?\n\n"
"📋 Main Menu:\n"
"1️⃣ Complete Products List\n"
"2️⃣ Browse Categories\n"
"3️⃣ Download Catalog\n"
"4️⃣ Chat with Veterinary AI Assistant\n\n"
"💬 Quick Actions:\n"
"* Type a product name (e.g., 'hydropex', 'respira aid plus')\n"
"* Ask about symptoms (e.g., 'respiratory problems', 'liver support')\n"
"* Search by category (e.g., 'antibiotics', 'vitamins')\n\n"
"🎤 Voice messages are supported!\n"
"You can speak product names, menu numbers, or ask questions."
)
async def handle_veterinary_product_followup(selection: str, from_number: str) -> None:
"""
Handle product follow-up selections with enhanced veterinary domain support
"""
try:
user_context = context_manager.get_context(from_number)
current_product = user_context.get('current_product')
if not current_product:
send_whatsjet_message(from_number, "❌ No product selected. Please search for a product first.")
return
if selection == '1':
# Talk to Veterinary Consultant
product_name = current_product.get('Product Name', 'the selected product')
consultant_msg = (
f"📞 Contact Veterinary Consultant\n\n"
f"Product: {product_name}\n\n"
"Please provide your details:\n"
"* Name and location\n"
"* Specific inquiry\n\n"
"💬 Example: Dr. Ali - Multan - Need consultation for respiratory problems\n\n"
"Type main at any time to go to main menu."
)
send_whatsjet_message(from_number, consultant_msg)
context_manager.update_context(
from_number,
current_state='contact_request',
current_menu='contact_request',
current_menu_options=['Provide contact details']
)
elif selection == '2':
# Inquire about Product Availability
await handle_availability_inquiry(from_number, user_context)
elif selection == '3':
welcome_msg = generate_veterinary_welcome_message(from_number, user_context)
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
return
else:
send_whatsjet_message(from_number, "❌ Invalid selection. Please choose 1, 2, or 3.")
return
except Exception as e:
logger.error(f"Error in product follow-up: {e}")
user_context = context_manager.get_context(from_number)
welcome_msg = generate_veterinary_welcome_message(from_number, user_context)
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
# Add or update the following functions in app.py:
# --- Restore handle_voice_message_complete ---
async def handle_voice_message_complete(from_number: str, msg: dict):
"""Complete voice message processing with OpenAI transcription - treats voice exactly like text"""
try:
logger.info(f"[Voice] Processing voice message from {from_number}")
logger.info(f"[Voice] Message structure: {msg}")
# Check if OpenAI is available
if not OPENAI_API_KEY:
send_whatsjet_message(from_number,
"🎤 Voice messages require OpenAI API. Please send a text message or type 'main' to see the menu.")
return
# Extract media URL from different possible locations
media_url = None
logger.info(f"[Voice] Checking media URL locations...")
if msg.get('media', {}).get('link'):
media_url = msg.get('media', {}).get('link')
logger.info(f"[Voice] Found media URL in media.link: {media_url}")
elif msg.get('media', {}).get('url'):
media_url = msg.get('media', {}).get('url')
logger.info(f"[Voice] Found media URL in media.url: {media_url}")
elif msg.get('url'):
media_url = msg.get('url')
logger.info(f"[Voice] Found media URL in url: {media_url}")
elif msg.get('audio', {}).get('url'):
media_url = msg.get('audio', {}).get('url')
logger.info(f"[Voice] Found media URL in audio.url: {media_url}")
else:
logger.error(f"[Voice] No media URL found in message structure")
logger.error(f"[Voice] Available fields: {list(msg.keys())}")
if 'media' in msg:
logger.error(f"[Voice] Media fields: {list(msg['media'].keys())}")
logger.info(f"[Voice] Final extracted media URL: {media_url}")
if not media_url:
send_whatsjet_message(from_number, "❌ Could not process voice message. Please try again.")
return
# Generate unique filename
filename = f"voice_{from_number}_{int(time.time())}.ogg"
# Download voice file
file_path = await download_voice_file(media_url, filename)
if not file_path:
send_whatsjet_message(from_number, "❌ Failed to download voice message. Please try again.")
return
# Transcribe with OpenAI
transcribed_text = await transcribe_voice_with_openai(file_path)
# Clean up voice file immediately
try:
os.remove(file_path)
except:
pass
# Handle empty, failed, or unclear transcription
if not transcribed_text or transcribed_text.strip() == "" or transcribed_text.lower() == "unclear audio":
logger.warning(f"[Voice] Empty or unclear transcription for {from_number}: '{transcribed_text}'")
send_whatsjet_message(from_number,
"🎤 *Voice Message Issue*\n\n"
"I couldn't understand your voice message clearly. This can happen due to:\n"
"• Very short voice note\n"
"• Background noise\n"
"• Microphone too far away\n"
"• Audio quality issues\n"
"• Speaking too fast\n\n"
"💡 *Tips for better voice notes:*\n"
"• Speak clearly and slowly\n"
"• Keep phone close to mouth\n"
"• Record in quiet environment\n"
"• Make voice note at least 2-3 seconds\n"
"• Speak in English or Urdu only\n\n"
"💬 *You can also:*\n"
"• Send a text message\n"
"• Type 'main' to see menu options\n"
"• Try voice note again")
return
# Process transcribed text with full intelligence
logger.info(f"[Voice] Transcribed: {transcribed_text}")
# Apply transcription error corrections
corrected_text = process_voice_input(transcribed_text)
if corrected_text != transcribed_text:
logger.info(f"[Voice] Applied corrections: '{transcribed_text}' -> '{corrected_text}'")
transcribed_text = corrected_text
# Detect language of transcribed text - STRICTLY ENGLISH OR URDU ONLY
detected_lang = 'en' # Default to English
try:
detected_lang = detect(transcribed_text)
logger.info(f"[Voice] Raw detected language: {detected_lang}")
# STRICTLY ENGLISH OR URDU ONLY - REJECT ALL OTHER LANGUAGES
if detected_lang in ['en', 'ur']:
reply_language = detected_lang
logger.info(f"[Voice] Valid language detected: {detected_lang}")
else:
# Reject any other language and force to English
reply_language = 'en'
logger.warning(f"[Voice] Invalid language '{detected_lang}' detected - forcing to English")
# If it's clearly not English/Urdu, mark as unclear
if detected_lang not in ['en', 'ur', 'unknown']:
logger.warning(f"[Voice] Non-English/Urdu language detected: {detected_lang}")
# Check if text contains Urdu/Arabic characters or Islamic greetings
urdu_arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF\uFB50-\uFDFF\uFE70-\uFEFF]')
islamic_greetings = ['assalamu', 'assalam', 'salam', 'salaam', 'adaab', 'namaste', 'khuda', 'allah']
has_urdu_chars = bool(urdu_arabic_pattern.search(transcribed_text))
has_islamic_greeting = any(greeting in transcribed_text.lower() for greeting in islamic_greetings)
if has_urdu_chars or has_islamic_greeting:
detected_lang = 'ur'
reply_language = 'ur'
logger.info(f"[Voice] Overriding language detection to Urdu due to Arabic/Urdu characters or Islamic greeting")
logger.info(f"[Voice] Final language set to: {reply_language}")
except Exception as e:
logger.warning(f"[Voice] Language detection failed: {e}, defaulting to English")
reply_language = 'en'
# For Urdu voice notes, translate to English for processing (ENGLISH/URDU ONLY)
processing_text = transcribed_text
if reply_language == 'ur' and detected_lang == 'ur':
try:
logger.info(f"[Voice] Translating Urdu voice note to English for processing")
# Only translate from Urdu to English - no other languages
translated_text = GoogleTranslator(source='ur', target='en').translate(transcribed_text)
processing_text = translated_text
logger.info(f"[Voice] Translated to English: {translated_text}")
except Exception as e:
logger.error(f"[Voice] Translation failed: {e}")
# If translation fails, use original text
processing_text = transcribed_text
elif detected_lang not in ['en', 'ur']:
# If language is not English or Urdu, reject it
logger.warning(f"[Voice] Non-English/Urdu language detected: {detected_lang}")
send_whatsjet_message(from_number,
"🎤 *Voice Message Issue*\n\n"
"I can only process voice messages in English or Urdu.\n\n"
"💡 *Please:*\n"
"• Speak in English or Urdu only\n"
"• Send a text message instead\n"
"• Type 'main' to see menu options")
return
# Determine reply language - always respond in English or Urdu
if detected_lang == 'ur':
reply_language = 'ur' # Urdu voice notes get Urdu replies
else:
reply_language = 'en' # All other languages get English replies
logger.info(f"[Voice] Processing text: {processing_text}")
logger.info(f"[Voice] Reply language set to: {reply_language}")
# Check if this is a greeting in voice note (check both original and translated)
user_context = context_manager.get_context(from_number)
current_state = user_context.get('current_state', 'main_menu')
if is_greeting(transcribed_text) or is_greeting(processing_text):
logger.info(f"[Voice] Greeting detected in voice note: {transcribed_text}")
if current_state == 'ai_chat_mode':
logger.info(f"[Voice] User is in AI chat mode, treating greeting as AI query instead of menu trigger")
await handle_general_query_with_ai(from_number, processing_text, user_context, reply_language)
return
else:
welcome_msg = generate_veterinary_welcome_message(from_number, user_context)
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(from_number, current_state='main_menu', current_menu='main_menu', current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()))
return
# For all other cases, always pass to OpenAI for intelligent response
await handle_general_query_with_ai(from_number, processing_text, user_context, reply_language)
return
except Exception as e:
logger.error(f"[Voice] Error processing voice message: {e}")
logger.error(f"[Voice] Full error details: {str(e)}")
import traceback
logger.error(f"[Voice] Traceback: {traceback.format_exc()}")
send_whatsjet_message(from_number,
"❌ Error processing voice message. Please try a text message.")
# Test endpoint for WhatsJet media format debugging
@app.get("/test-whatsjet-media-formats")
async def test_whatsjet_media_formats(phone: str):
"""Test endpoint to debug WhatsJet media message formats"""
try:
test_image_url = "https://amgocus.com/uploads/images/respiraaidplus.png"
test_message = "🧪 *Media Format Test*\n\nTesting different WhatsJet media payload formats."
# Test different payload formats
formats = [
{
"name": "Format 1 - caption",
"payload": {
"phone_number": phone,
"caption": test_message,
"media_type": "image/png",
"media_url": test_image_url,
"media_filename": "test.png"
}
},
{
"name": "Format 2 - message_body",
"payload": {
"phone_number": phone,
"message_body": test_message,
"media_type": "image/png",
"media_url": test_image_url,
"media_filename": "test.png"
}
},
{
"name": "Format 3 - simplified",
"payload": {
"phone_number": phone,
"message_body": test_message,
"media_type": "image/png",
"media_url": test_image_url
}
},
{
"name": "Format 4 - different fields",
"payload": {
"phone_number": phone,
"caption": test_message,
"type": "image/png",
"url": test_image_url
}
}
]
results = []
url = f"{WHATSJET_API_URL}/{WHATSJET_VENDOR_UID}/contact/send-message?token={WHATSJET_API_TOKEN}"
for format_info in formats:
try:
logger.info(f"[Test] Trying {format_info['name']}: {format_info['payload']}")
response = httpx.post(url, json=format_info['payload'], timeout=15)
result = {
"format": format_info['name'],
"status_code": response.status_code,
"success": response.status_code == 200,
"response_text": response.text[:500] if response.text else "No response text"
}
results.append(result)
if response.status_code == 200:
logger.info(f"[Test] ✅ {format_info['name']} succeeded!")
else:
logger.warning(f"[Test] ❌ {format_info['name']} failed: {response.status_code}")
except Exception as e:
result = {
"format": format_info['name'],
"status_code": "Exception",
"success": False,
"response_text": str(e)
}
results.append(result)
logger.error(f"[Test] Exception with {format_info['name']}: {e}")
return {
"status": "completed",
"phone": phone,
"image_url": test_image_url,
"results": results,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Error in test WhatsJet media formats: {e}")
return {"error": str(e)}
# Test endpoint for product image URL accessibility
@app.get("/test-product-image-url")
async def test_product_image_url(product_name: str = "Respira Aid Plus"):
"""Test endpoint to check if product image URL is accessible"""
try:
image_path = get_product_image_path(product_name)
if not image_path:
return {
"product_name": product_name,
"image_path": None,
"accessible": False,
"error": "No image path found"
}
# Test if the URL is accessible
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive'
}
response = requests.get(image_path, headers=headers, timeout=10, stream=True)
result = {
"product_name": product_name,
"image_path": image_path,
"status_code": response.status_code,
"accessible": response.status_code == 200,
"content_type": response.headers.get('content-type', 'unknown'),
"content_length": response.headers.get('content-length', 'unknown'),
"headers": dict(response.headers)
}
if response.status_code == 200:
logger.info(f"[Test] ✅ Product image URL is accessible: {image_path}")
else:
logger.warning(f"[Test] ❌ Product image URL not accessible: {image_path} (status: {response.status_code})")
return result
except Exception as e:
return {
"product_name": product_name,
"image_path": image_path,
"accessible": False,
"error": str(e)
}
except Exception as e:
logger.error(f"Error testing product image URL: {e}")
return {"error": str(e)}
# Test endpoint for send_product_image_with_caption function
@app.get("/test-send-product-image")
async def test_send_product_image(phone: str, product_name: str = "Bromacid"):
"""
Test endpoint to test the send_product_image_with_caption function with a specific product.
"""
try:
# Load product from CSV
df = pd.read_csv('Veterinary.csv')
row = df[df['Product Name'].str.lower() == product_name.lower()]
if row.empty:
return {"error": f"Product '{product_name}' not found in CSV"}
product = row.iloc[0].to_dict()
user_context = context_manager.get_context(phone)
logger.info(f"[Test] Testing send_product_image_with_caption for product: {product_name}")
await send_product_image_with_caption(phone, product, user_context, 'en')
return {
"status": "sent",
"phone": phone,
"product": product_name,
"message": f"Product image with caption sent for {product_name}"
}
except Exception as e:
logger.error(f"[Test] Error testing send_product_image_with_caption: {e}")
return {"error": str(e)}
async def handle_intelligent_product_inquiry(from_number: str, query: str, user_context: dict, reply_language: str = 'en'):
"""Handle product inquiry with OpenAI intelligence and media support"""
try:
# Check for intelligent product count queries
count_keywords = ['how many', 'count', 'number of', 'total', 'quantity', 'amount']
is_count_query = any(keyword in query.lower() for keyword in count_keywords)
if is_count_query and products_df is not None and not products_df.empty:
# Intelligent count analysis
query_lower = query.lower()
# Check if it's asking for total products
total_indicators = ['total products', 'all products', 'products you have', 'products in total', 'total medicines', 'all medicines']
is_total_query = any(indicator in query_lower for indicator in total_indicators)
if is_total_query:
# Total products count
total_products = len(products_df)
categories = products_df['Category'].dropna().unique()
total_categories = len(categories)
if reply_language == 'ur':
response = (
f"📊 *کل مصنوعات کی تعداد*\n\n"
f"ہمارے پاس کل **{total_products}** ویٹرنری مصنوعات ہیں۔\n\n"
f"📂 *زمرے:* {total_categories}\n"
f"📦 *مصنوعات:* {total_products}\n\n"
"💡 *مثال کے طور پر:*\n"
"• 'سانس کی مصنوعات دکھائیں'\n"
"• 'hydropex کے بارے میں بتائیں'\n"
"• 'main' لکھ کر مین مینو پر جائیں"
)
else:
response = (
f"📊 *Total Product Count*\n\n"
f"We have a total of **{total_products}** veterinary products.\n\n"
f"📂 *Categories:* {total_categories}\n"
f"📦 *Products:* {total_products}\n\n"
"💡 *Examples:*\n"
"• 'Show me respiratory products'\n"
"• 'Tell me about hydropex'\n"
"• Type 'main' to return to main menu"
)
send_whatsjet_message(from_number, response)
return
else:
# Specific category/product type count
# Extract search terms from the query
search_terms = []
# Common veterinary categories and terms
category_mappings = {
'respiratory': ['respiratory', 'breathing', 'lung', 'bronchi', 'respira'],
'liver': ['liver', 'hepatic', 'hepat', 'hepo'],
'antibiotic': ['antibiotic', 'anti-biotic', 'biotic', 'tribiotic'],
'vitamin': ['vitamin', 'vit', 'multivitamin', 'symodex', 'adek'],
'electrolyte': ['electrolyte', 'hydropex', 'rehydration'],
'poultry': ['poultry', 'chicken', 'bird', 'avian'],
'livestock': ['livestock', 'cattle', 'cow', 'buffalo', 'animal'],
'immune': ['immune', 'immunity', 'immuno', 'ec-immune'],
'parasite': ['parasite', 'parasitic', 'para'],
'antifungal': ['antifungal', 'fungal', 'myco'],
'pain': ['pain', 'analgesic', 'painkiller'],
'fever': ['fever', 'pyrexia', 'temperature']
}
# Find matching categories
matched_categories = []
for category, terms in category_mappings.items():
if any(term in query_lower for term in terms):
matched_categories.append(category)
# Search in CSV for matching products
matching_products = []
if matched_categories:
for category in matched_categories:
# Search by category name
category_products = products_df[
products_df['Category'].str.lower().str.contains(category, na=False) |
products_df['Product Name'].str.lower().str.contains(category, na=False) |
products_df['Target Species'].str.lower().str.contains(category, na=False) |
products_df['Mode of Action'].str.lower().str.contains(category, na=False)
]
matching_products.extend(category_products.to_dict('records'))
# Remove duplicates
seen_names = set()
unique_products = []
for product in matching_products:
name = product.get('Product Name', '')
if name not in seen_names:
seen_names.add(name)
unique_products.append(product)
matching_products = unique_products
else:
# If no specific category found, search for any terms in the query
query_words = query_lower.split()
for word in query_words:
if len(word) > 3: # Only search for meaningful words
word_products = products_df[
products_df['Category'].str.lower().str.contains(word, na=False) |
products_df['Product Name'].str.lower().str.contains(word, na=False) |
products_df['Target Species'].str.lower().str.contains(word, na=False) |
products_df['Mode of Action'].str.lower().str.contains(word, na=False)
]
matching_products.extend(word_products.to_dict('records'))
# Remove duplicates
seen_names = set()
unique_products = []
for product in matching_products:
name = product.get('Product Name', '')
if name not in seen_names:
seen_names.add(name)
unique_products.append(product)
matching_products = unique_products
# Generate response based on results
if matching_products:
count = len(matching_products)
# Get category breakdown
categories_found = {}
for product in matching_products:
category = product.get('Category', 'Unknown')
categories_found[category] = categories_found.get(category, 0) + 1
if reply_language == 'ur':
response = (
f"📊 *{query}*\n\n"
f"ہمارے پاس **{count}** مصنوعات ملی ہیں۔\n\n"
)
if len(categories_found) > 1:
response += "📂 *زمرے کے مطابق:*\n"
for category, cat_count in categories_found.items():
response += f"• {category}: {cat_count}\n"
response += "\n"
response += (
"💡 *مثال کے طور پر:*\n"
"• 'سانس کی مصنوعات دکھائیں'\n"
"• 'hydropex کے بارے میں بتائیں'\n"
"• 'main' لکھ کر مین مینو پر جائیں"
)
else:
response = (
f"📊 *{query}*\n\n"
f"We found **{count}** products.\n\n"
)
if len(categories_found) > 1:
response += "📂 *By Category:*\n"
for category, cat_count in categories_found.items():
response += f"• {category}: {cat_count}\n"
response += "\n"
response += (
"💡 *Examples:*\n"
"• 'Show me respiratory products'\n"
"• 'Tell me about hydropex'\n"
"• Type 'main' to return to main menu"
)
send_whatsjet_message(from_number, response)
return
else:
# No matching products found
if reply_language == 'ur':
response = (
f"❌ *{query}*\n\n"
"ہمیں کوئی مصنوعات نہیں ملی۔\n\n"
"💡 *مثال کے طور پر:*\n"
"• 'سانس کی مصنوعات'\n"
"• 'جگر کی مصنوعات'\n"
"• 'main' لکھ کر مین مینو پر جائیں"
)
else:
response = (
f"❌ *{query}*\n\n"
"No products found matching your query.\n\n"
"💡 *Try:*\n"
"• 'respiratory products'\n"
"• 'liver products'\n"
"• Type 'main' to return to main menu"
)
send_whatsjet_message(from_number, response)
return
# Clean and normalize the query
clean_query = query.strip().lower()
# Check for common misspellings and variations
misspelling_corrections = {
'aapex': 'apex',
'apex': 'apex biotical',
'ec immune': 'ec-immune',
'ecimmune': 'ec-immune',
'hydro pex': 'hydropex',
'hydropex': 'hydropex',
'respira aid': 'respira aid plus',
'respiraaid': 'respira aid plus',
'hepo sel': 'heposel',
'heposel': 'heposel',
'brom acid': 'bromacid',
'bromacid': 'bromacid',
'hexa tox': 'hexatox',
'hexatox': 'hexatox',
'apma fort': 'apma fort',
'apmafort': 'apma fort',
'para c': 'para c.e',
'para ce': 'para c.e',
'parace': 'para c.e',
'tribiotic': 'tribiotic',
'phyto sal': 'phyto-sal',
'phytosal': 'phyto-sal',
'mycopex': 'mycopex super',
'mycopexsuper': 'mycopex super',
'eflin': 'eflin kt-20',
'eflinkt20': 'eflin kt-20',
'salcozine': 'salcozine st-30',
'salcozinest30': 'salcozine st-30',
'oftilex': 'oftilex ua-10',
'oftilexua10': 'oftilex ua-10',
'biscomin': 'biscomin 10',
'biscomin10': 'biscomin 10',
'apvita': 'apvita plus',
'apvitaplus': 'apvita plus',
'bg aspro': 'b-g aspro-c',
'bgaspro': 'b-g aspro-c',
'liverpex': 'liverpex',
'symodex': 'symodex',
'adek': 'adek gold',
'adekgold': 'adek gold',
'immuno': 'immuno dx',
'immunodx': 'immuno dx',
'mood of action': 'mode of action',
'mode of action': 'mode of action',
'mechanism of action': 'mode of action',
'how does it work': 'mode of action',
'what does it do': 'mode of action',
'how it works': 'mode of action'
}
# Apply misspelling corrections
corrected_query = clean_query
for misspelling, correction in misspelling_corrections.items():
if misspelling in clean_query:
corrected_query = clean_query.replace(misspelling, correction)
logger.info(f"[Query] Applied correction: '{misspelling}' -> '{correction}'")
break
# Check if query is asking about mode of action or mechanism
mode_of_action_keywords = ['mode of action', 'mechanism', 'how does it work', 'what does it do', 'how it works']
is_mode_of_action_query = any(keyword in clean_query for keyword in mode_of_action_keywords)
# First try direct product search with original query
products = get_veterinary_product_matches(query)
# If no products found, try with corrected query
if not products and corrected_query != clean_query:
products = get_veterinary_product_matches(corrected_query)
if products:
logger.info(f"[Query] Found products using corrected query: '{corrected_query}'")
# If still no products, try fuzzy matching with product names
if not products:
if products_df is not None and not products_df.empty:
all_product_names = [str(name).lower() for name in products_df['Product Name'].dropna()]
# Use fuzzy matching to find similar product names
for product_name in all_product_names:
similarity = fuzz.ratio(clean_query, product_name)
if similarity >= 80: # 80% similarity threshold
logger.info(f"[Query] Fuzzy match found: '{clean_query}' -> '{product_name}' (similarity: {similarity}%)")
products = get_veterinary_product_matches(product_name)
if products:
break
if products:
# Check if this is a broad/category query (multiple products found)
if len(products) > 1:
# Use OpenAI to generate a professional summary and list all products
if OPENAI_API_KEY:
try:
# Create a comprehensive prompt for multiple products
products_info = []
for i, product in enumerate(products, 1):
product_name = product.get('Product Name', 'N/A')
category = product.get('Category', 'N/A')
target_species = product.get('Target Species', 'N/A')
products_info.append(f"{i}. {product_name} - {category} ({target_species})")
products_text = "\n".join(products_info)
prompt = f"""
You are a professional veterinary product assistant for Apex Biotical. The user asked about "{query}" and we found {len(products)} relevant products.
Available Products:
{products_text}
Please provide a CONCISE response:
1. Brief acknowledgment (1 line max)
2. Simple numbered list of products with category only
3. Clear instructions on how to proceed
Keep it SHORT and PRECISE. No marketing language, no detailed explanations, no repetition.
Format: Brief intro + numbered list + instructions only.
"""
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=400
)
ai_response = response.choices[0].message['content'].strip()
# Add instructions for selection
selection_instructions = (
f"\n\n💬 *To view detailed information about any product, reply with its number (1-{len(products)})*\n"
"💬 *Type 'main' to return to the main menu*"
)
full_response = ai_response + selection_instructions
# Translate response if needed (ENGLISH/URDU ONLY)
if reply_language == 'ur':
try:
# Only translate from English to Urdu - no other languages
translated_response = GoogleTranslator(source='en', target='ur').translate(full_response)
send_whatsjet_message(from_number, translated_response)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, full_response)
else:
send_whatsjet_message(from_number, full_response)
# Store the product list in context for selection handling
context_manager.update_context(
from_number,
current_state='intelligent_products_menu',
current_menu='intelligent_products_menu',
current_menu_options=[f"Product {i+1}" for i in range(len(products))],
available_products=products,
last_query=query
)
# Add to conversation history
context_manager.add_to_history(from_number, query, full_response)
return
except Exception as e:
logger.error(f"[AI] Error generating product summary: {e}")
# Fall back to simple listing if AI fails
pass
# Fallback: Simple listing without AI
message = f"🔍 *Found {len(products)} products matching '{query}':*\n\n"
for i, product in enumerate(products, 1):
product_name = product.get('Product Name', 'N/A')
category = product.get('Category', 'N/A')
target_species = product.get('Target Species', 'N/A')
message += f"{format_number_with_emoji(i)} {product_name}\n"
message += f" 📦 {category} ({target_species})\n\n"
message += (
f"💬 *To view detailed information about any product, reply with its number (1-{len(products)})*\n"
"💬 *Type 'main' to return to the main menu*"
)
# Translate response if needed (ENGLISH/URDU ONLY)
if reply_language == 'ur':
try:
# Only translate from English to Urdu - no other languages
translated_message = GoogleTranslator(source='en', target='ur').translate(message)
send_whatsjet_message(from_number, translated_message)
except Exception as e:
logger.error(f"[AI] Translation error: {e}")
send_whatsjet_message(from_number, message)
else:
send_whatsjet_message(from_number, message)
# Store the product list in context for selection handling
context_manager.update_context(
from_number,
current_state='intelligent_products_menu',
current_menu='intelligent_products_menu',
current_menu_options=[f"Product {i+1}" for i in range(len(products))],
available_products=products,
last_query=query
)
# Add to conversation history
context_manager.add_to_history(from_number, query, message)
else:
# Single product found - show detailed information with media support
selected_product = products[0]
context_manager.update_context(
from_number,
current_product=selected_product,
current_state='product_inquiry',
current_menu='product_inquiry',
current_menu_options=list(MENU_CONFIG['product_inquiry']['option_descriptions'].values())
)
# If it's a mode of action query, provide detailed mechanism information
if is_mode_of_action_query:
product_name = clean_special_characters(selected_product.get('Product Name', 'Unknown'))
composition = clean_special_characters(selected_product.get('Composition', 'Not specified'))
indications = clean_special_characters(selected_product.get('Indications', 'Not specified'))
mode_of_action_response = (
f"🧪 *{product_name} - Mode of Action*\n\n"
f"📋 *Composition:* {composition}\n\n"
f"💊 *Mechanism:* {indications}\n\n"
f"💬 *For complete product details, select an option below:*\n"
f"1️⃣ Talk to Veterinary Consultant\n"
f"2️⃣ Inquire About Availability\n"
f"3️⃣ Back to Main Menu"
)
send_whatsjet_message(from_number, mode_of_action_response)
else:
# Send product image with caption using the new function
await send_product_image_with_caption(from_number, selected_product, user_context)
# Add to conversation history
context_manager.add_to_history(from_number, query, f"Product inquiry for {selected_product.get('Product Name', 'Unknown')}")
else:
# No products found - check if it's an ambiguous query that needs clarification
if any(keyword in clean_query for keyword in ['what is', 'apex', 'immune', 'hydro', 'hepo', 'brom', 'trib', 'symo']):
# Check if it might be about a product but needs clarification
if 'apex' in clean_query:
# Direct response about Apex Biotical
if reply_language == 'ur':
message = (
"🏥 *Apex Biotical Solutions*\n\n"
"ہم ایک پیشہ ور ویٹرنری فارماسیوٹیکل کمپنی ہیں جو مندرجہ ذیل میں مہارت رکھتے ہیں:\n\n"
"📦 *ہماری مصنوعات:*\n"
"• سانس کی مدد (Respira Aid Plus, Bromacid)\n"
"• جگر کی صحت (Heposel, Liverpex)\n"
"• مدافعتی نظام (EC-Immune)\n"
"• اینٹی بائیوٹکس (Tribiotic, Para C.E)\n"
"• وٹامنز اور سپلیمنٹس (Symodex, Adek Gold)\n\n"
"💬 *مصنوعات دیکھنے کے لیے:*\n"
"• 'main' لکھ کر مین مینو پر جائیں"
)
else:
message = (
"🏥 *Apex Biotical Solutions*\n\n"
"We are a leading veterinary pharmaceutical company specializing in:\n\n"
"📦 *Our Products:*\n"
"• Respiratory support (Respira Aid Plus, Bromacid)\n"
"• Liver health (Heposel, Liverpex)\n"
"• Immune system (EC-Immune)\n"
"• Antibiotics (Tribiotic, Para C.E)\n"
"• Vitamins & supplements (Symodex, Adek Gold)\n\n"
"🌍 *Our Focus:*\n"
"• Professional veterinary solutions\n"
"• Quality pharmaceutical products\n"
"• Comprehensive animal healthcare\n\n"
"💬 *To explore our products:*\n"
"• Type 'main' to see the main menu\n"
"• Type a product name (e.g., 'hydropex', 'respira aid plus')"
)
send_whatsjet_message(from_number, message)
context_manager.add_to_history(from_number, query, message)
return
elif any(product_hint in clean_query for product_hint in ['immune', 'hydro', 'hepo', 'brom', 'trib', 'symo']):
# Use OpenAI for intelligent response about veterinary topics
if OPENAI_API_KEY:
await handle_ai_chat_mode(from_number, query, reply_language)
else:
# Fallback to generic response
if reply_language == 'ur':
message = "❌ *سوال درست نہیں ہے*\n\n💬 *براہ کرم اپنا سوال درست کریں یا 'main' لکھ کر مین مینو پر جائیں*"
else:
message = "❌ *Please correct your question*\n\n💬 *Type 'main' to go to main menu*"
send_whatsjet_message(from_number, message)
else:
# Use OpenAI for general veterinary questions
if OPENAI_API_KEY:
await handle_ai_chat_mode(from_number, query, reply_language)
else:
# Fallback to generic response
if reply_language == 'ur':
message = "❌ *سوال درست نہیں ہے*\n\n💬 *براہ کرم اپنا سوال درست کریں یا 'main' لکھ کر مین مینو پر جائیں*"
else:
message = "❌ *Please correct your question*\n\n💬 *Type 'main' to go to main menu*"
send_whatsjet_message(from_number, message)
else:
# Generic, professional "not found" response
if reply_language == 'ur':
message = "❌ *سوال درست نہیں ہے*\n\n💬 *براہ کرم اپنا سوال درست کریں یا 'main' لکھ کر مین مینو پر جائیں*"
else:
message = "❌ *Please correct your question*\n\n💬 *Type 'main' to go to main menu*"
send_whatsjet_message(from_number, message)
except Exception as e:
logger.error(f"Error in product inquiry: {e}")
# Professional error response
if reply_language == 'ur':
error_msg = "❌ *خطا آ گئی ہے*\n\n💬 *براہ کرم 'main' لکھ کر مین مینو پر جائیں*"
else:
error_msg = "❌ *An error occurred*\n\n💬 *Please type 'main' to go to main menu*"
send_whatsjet_message(from_number, error_msg)
context_manager.update_context(from_number, current_state='main_menu', current_menu='main_menu', current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values()))
async def handle_contact_request(from_number: str):
"""Handle contact request"""
try:
message = (
"📞 *Contact Information*\n\n"
"Please provide your details:\n"
"• Name and location\n"
"• Phone number\n"
"• Specific inquiry\n\n"
"💬 *Example:* Dr. Ali - Multan - Need consultation for liver disease\n\n"
"💬 *Type 'main' to return to the main menu.*"
)
send_whatsjet_message(from_number, message)
context_manager.update_context(
from_number,
current_state='contact_request',
current_menu='contact_request',
current_menu_options=['Provide contact details']
)
except Exception as e:
logger.error(f"[Contact] Error handling contact request: {e}")
# Instead of sending a generic error, return to main menu
welcome_msg = generate_veterinary_welcome_message()
send_whatsjet_message(from_number, welcome_msg)
context_manager.update_context(
from_number,
current_state='main_menu',
current_menu='main_menu',
current_menu_options=list(MENU_CONFIG['main_menu']['option_descriptions'].values())
)
# Add this helper function near the top of the file:
def restore_english_terms(translated_text, original_text, product_names, category_names):
"""
Replace Urdu-translated product/category names in translated_text with their original English from original_text.
"""
for name in product_names + category_names:
if name and name.lower() in translated_text.lower() and name.lower() not in original_text.lower():
# If the English name is not in the original, skip
continue
# Replace Urdu translation with English name
# (This is a simple approach; for more accuracy, use regex or fuzzy matching)
translated_text = translated_text.replace(name, name)
return translated_text
if __name__ == "__main__":
# Load products data on startup
load_products_data()
# Launch FastAPI app
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)