File size: 7,446 Bytes
f2dbf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import re
from pathlib import Path

import numpy as np
import torch
from PIL import Image, ImageOps

import comfy.utils

from .utils.image_convert import pil2tensor

_CATEGORY = 'fnodes/files'


class ReadImage:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'image_path': ('STRING', {'default': 'images'}),
            }
        }

    RETURN_TYPES = ('IMAGE', 'STRING')
    RETURN_NAMES = ('image', 'file_stem')
    FUNCTION = 'execute'
    CATEGORY = _CATEGORY
    DESCRIPTION = '读取指定路径图片,返回图片和图片名称'

    def execute(self, image_path):
        # 去掉可能存在的双引号
        image_path = image_path.strip('"')

        if not os.path.exists(image_path):
            raise FileNotFoundError(f'文件未找到: {image_path}')

        file_stem = str(Path(image_path).stem)

        img = Image.open(image_path)
        img = ImageOps.exif_transpose(img)

        if img is None:
            raise ValueError(f'无法从文件中读取有效图像: {image_path}')

        if img.mode == 'I':
            img = img.point(lambda i: i * (1 / 255))
        img = img.convert('RGB')

        image = np.array(img).astype(np.float32) / 255.0
        image = torch.from_numpy(image)[None,]

        return (image, file_stem)


class LoadImagesFromFolder:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'input_path': ('STRING', {'default': '', 'multiline': False}),
                'start_index': ('INT', {'default': 0, 'min': 0, 'max': 9999}),
                'max_index': ('INT', {'default': 1, 'min': 1, 'max': 9999}),
            }
        }

    RETURN_TYPES = (
        'IMAGE',
        'IMAGE',
    )
    RETURN_NAMES = (
        'images_list',
        'image_batch',
    )
    OUTPUT_IS_LIST = (
        True,
        False,
    )
    FUNCTION = 'make_list'
    CATEGORY = _CATEGORY
    DESCRIPTION = '读取文件夹中的图片,返回图片列表和图片批次'

    def make_list(self, start_index, max_index, input_path):
        # 检查输入路径是否存在
        if not os.path.exists(input_path):
            raise FileNotFoundError(f'文件夹未找到: {input_path}')

        # 检查文件夹是否为空
        if not os.listdir(input_path):
            raise ValueError(f'文件夹为空: {input_path}')

        # 对文件列表进行排序
        file_list = sorted(
            os.listdir(input_path),
            key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()),
        )

        image_list = []

        # 确保 start_index 在列表范围内
        start_index = max(0, min(start_index, len(file_list) - 1))

        # 计算结束索引
        end_index = min(start_index + max_index, len(file_list))

        ref_image = None

        for num in range(start_index, end_index):
            fname = os.path.join(input_path, file_list[num])
            img = Image.open(fname)
            img = ImageOps.exif_transpose(img)
            if img is None:
                raise ValueError(f'无法从文件中读取有效图像: {fname}')
            image = img.convert('RGB')

            t_image = pil2tensor(image)
            # 确保所有图像的尺寸相同
            if ref_image is None:
                ref_image = t_image
            else:
                if t_image.shape[1:] != ref_image.shape[1:]:
                    t_image = comfy.utils.common_upscale(
                        t_image.movedim(-1, 1),
                        ref_image.shape[2],
                        ref_image.shape[1],
                        'lanczos',
                        'center',
                    ).movedim(1, -1)

            image_list.append(t_image)

        if not image_list:
            raise ValueError('未找到有效图像')

        image_batch = torch.cat(image_list, dim=0)
        images_out = [image_batch[i : i + 1, ...] for i in range(image_batch.shape[0])]

        return (
            images_out,
            image_batch,
        )


class FilePathAnalyzer:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'file_path': ('STRING', {'default': 'file.txt'}),
            }
        }

    RETURN_TYPES = ('STRING', 'STRING', 'STRING', 'STRING')
    RETURN_NAMES = ('parent_dir', 'file_stem', 'file_extension', 'full_path')
    FUNCTION = 'execute'
    CATEGORY = _CATEGORY
    DESCRIPTION = '从文件路径中提取上层目录、文件名(不含扩展名)、扩展名和完整路径'

    def execute(self, file_path):
        # 去掉可能存在的双引号
        file_path = file_path.strip('"')
        path = Path(file_path)

        parent_dir = str(path.parent)
        file_stem = path.stem
        file_extension = path.suffix
        full_path = str(path.absolute())

        return (parent_dir, file_stem, file_extension, full_path)


class RegexExtractor:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'input_string': ('STRING', {'default': ''}),
                'regex_pattern': ('STRING', {'default': ''}),
                'group_number': ('INT', {'default': 0, 'min': 0, 'max': 100}),
            }
        }

    RETURN_TYPES = ('STRING',)
    RETURN_NAMES = ('extracted_text',)
    FUNCTION = 'execute'
    CATEGORY = _CATEGORY
    DESCRIPTION = '使用正则表达式从输入字符串中提取文本'

    def execute(self, input_string, regex_pattern, group_number):
        try:
            match = re.search(regex_pattern, input_string)
            if match:
                groups = match.groups()
                if 0 <= group_number <= len(groups):
                    return (match.group(group_number),)
                else:
                    return ('组号超出范围',)
            else:
                return ('未找到匹配',)
        except re.error:
            return ('无效的正则表达式',)


class SelectFace:
    dir_dict = {}

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        target_dir = r'D:\aidraw\fworker\assets\face_pieces'
        for d in Path(target_dir).iterdir():
            if d.is_dir():
                cls.dir_dict[d.name] = d

        return {'required': {'face_name': (list(cls.dir_dict.keys()),)}}

    RETURN_TYPES = (
        'STRING',
        'STRING',
    )
    RETURN_NAMES = (
        'face_path',
        'face_name',
    )
    FUNCTION = 'execute'

    CATEGORY = _CATEGORY
    DESCRIPTION = '选择人脸'

    def execute(self, face_name):
        return (
            str(self.dir_dict[face_name]),
            face_name,
        )


FILE_CLASS_MAPPINGS = {
    'ReadImage-': ReadImage,
    'LoadImagesFromFolder-': LoadImagesFromFolder,
    'FilePathAnalyzer-': FilePathAnalyzer,
    'RegexExtractor-': RegexExtractor,
    'SelectFace-': SelectFace,
}

FILE_NAME_MAPPINGS = {
    'ReadImage-': 'Read Image from Path',
    'LoadImagesFromFolder-': 'Load Images From Folder',
    'FilePathAnalyzer-': 'FilePath Analyzer',
    'RegexExtractor-': 'Regex Extractor',
    'SelectFace-': 'Select Face',
}