Spaces:
Runtime error
Runtime error
File size: 9,692 Bytes
f2dbf59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import math
import cv2
from PIL import Image
from comfy.utils import common_upscale
from .utils.image_convert import mask2tensor, np2tensor, tensor2mask, tensor2np
from .utils.mask_utils import solid_mask
from .utils.utils import make_even
_CATEGORY = 'fnodes/image scale'
UPSCALE_METHODS = ['lanczos', 'nearest-exact', 'bilinear', 'area', 'bicubic']
class GetImageSize:
@classmethod
def INPUT_TYPES(cls):
return {
'required': {
'image': ('IMAGE',),
}
}
RETURN_TYPES = (
'INT',
'INT',
'INT',
)
RETURN_NAMES = (
'width',
'height',
'count',
)
FUNCTION = 'execute'
CATEGORY = _CATEGORY
def execute(self, image):
return {
'ui': {
'width': (image.shape[2],),
'height': (image.shape[1],),
'count': (image.shape[0],),
},
'result': (
image.shape[2],
image.shape[1],
image.shape[0],
),
}
class BaseImageScaler:
@classmethod
def INPUT_TYPES(cls):
return {
'required': {
'image': ('IMAGE',),
'upscale_method': (UPSCALE_METHODS,),
},
'optional': {
'mask': ('MASK',),
},
}
RETURN_TYPES = ('IMAGE', 'MASK', 'INT', 'INT', 'INT')
RETURN_NAMES = ('image', 'mask', 'width', 'height', 'min_dimension')
CATEGORY = _CATEGORY
def scale_image(self, image, width, height, upscale_method, mask=None):
image_tensor = image.movedim(-1, 1)
scaled_image = common_upscale(image_tensor, width, height, upscale_method, 'disabled')
scaled_image = scaled_image.movedim(1, -1)
result_mask = solid_mask(width, height)
if mask is not None:
mask_image = mask2tensor(mask)
mask_image = mask_image.movedim(-1, 1)
mask_image = common_upscale(mask_image, width, height, upscale_method, 'disabled')
mask_image = mask_image.movedim(1, -1)
result_mask = tensor2mask(mask_image)
return scaled_image, result_mask
def prepare_result(self, scaled_image, result_mask, width, height):
return {
'ui': {
'width': (width,),
'height': (height,),
},
'result': (
scaled_image,
result_mask,
width,
height,
min(width, height),
),
}
class ImageScalerForSDModels(BaseImageScaler):
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs['required']['sd_model_type'] = (['sdxl', 'sd15', 'sd15+', 'sdxl+'],)
return base_inputs
FUNCTION = 'execute'
DESCRIPTION = """
根据SD模型类型缩放图片到指定像素数,sd15为512x512,sd15+为512x768,sdxl为1024x1024,sdxl+为1024x1280
"""
def execute(self, image, upscale_method, sd_model_type, mask=None):
sd_dimensions = {'sd15': (512, 512), 'sd15+': (512, 768), 'sdxl': (1024, 1024), 'sdxl+': (1024, 1280)}
target_width, target_height = sd_dimensions.get(sd_model_type, (1024, 1024))
total_pixels = target_width * target_height
scale_by = math.sqrt(total_pixels / (image.shape[2] * image.shape[1]))
width = round(image.shape[2] * scale_by)
height = round(image.shape[1] * scale_by)
scaled_image, result_mask = self.scale_image(image, width, height, upscale_method, mask)
return self.prepare_result(scaled_image, result_mask, width, height)
class ImageScaleBySpecifiedSide(BaseImageScaler):
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs['required'].update(
{
'size': ('INT', {'default': 512, 'min': 0, 'step': 1, 'max': 99999}),
'shorter': ('BOOLEAN', {'default': False}),
}
)
return base_inputs
FUNCTION = 'execute'
DESCRIPTION = """
根据指定边长缩放图片,shorter为True时参照短边,否则参照长边
"""
def execute(self, image, size, upscale_method, shorter, mask=None):
if shorter:
reference_side_length = min(image.shape[2], image.shape[1])
else:
reference_side_length = max(image.shape[2], image.shape[1])
scale_by = reference_side_length / size
width = make_even(round(image.shape[2] / scale_by))
height = make_even(round(image.shape[1] / scale_by))
scaled_image, result_mask = self.scale_image(image, width, height, upscale_method, mask)
return self.prepare_result(scaled_image, result_mask, width, height)
class ComputeImageScaleRatio:
@classmethod
def INPUT_TYPES(cls):
return {
'required': {
'image': ('IMAGE',),
'target_max_size': (
'INT',
{'default': 1920, 'min': 0, 'step': 1, 'max': 99999},
),
},
}
RETURN_TYPES = (
'FLOAT',
'INT',
'INT',
)
RETURN_NAMES = (
'rescale_ratio',
'width',
'height',
)
FUNCTION = 'execute'
CATEGORY = _CATEGORY
DESCRIPTION = '根据引用图片的大小和目标最大尺寸,返回缩放比例和缩放后的宽高'
def execute(self, image, target_max_size):
samples = image.movedim(-1, 1)
width, height = samples.shape[3], samples.shape[2]
rescale_ratio = target_max_size / max(width, height)
new_width = make_even(round(width * rescale_ratio))
new_height = make_even(round(height * rescale_ratio))
return {
'ui': {
'rescale_ratio': (rescale_ratio,),
'width': (new_width,),
'height': (new_height,),
},
'result': (
rescale_ratio,
new_width,
new_height,
),
}
class ImageRotate:
@classmethod
def INPUT_TYPES(cls):
return {
'required': {
'image_from': ('IMAGE',),
'angle': (
'FLOAT',
{'default': 0.1, 'min': -14096, 'max': 14096, 'step': 0.01},
),
'expand': ('BOOLEAN', {'default': True}),
},
}
RETURN_TYPES = ('IMAGE',)
RETURN_NAMES = ('rotated_image',)
FUNCTION = 'run'
CATEGORY = _CATEGORY
def run(self, image_from, angle, expand):
image_np = tensor2np(image_from[0])
height, width = image_np.shape[:2]
center = (width / 2, height / 2)
if expand:
# 计算新图像的尺寸
rot_mat = cv2.getRotationMatrix2D(center, angle, 1.0)
abs_cos = abs(rot_mat[0, 0])
abs_sin = abs(rot_mat[0, 1])
new_width = int(height * abs_sin + width * abs_cos)
new_height = int(height * abs_cos + width * abs_sin)
# 调整旋转矩阵
rot_mat[0, 2] += (new_width / 2) - center[0]
rot_mat[1, 2] += (new_height / 2) - center[1]
# 执行旋转
rotated_image = cv2.warpAffine(image_np, rot_mat, (new_width, new_height), flags=cv2.INTER_CUBIC)
else:
# 不扩展图像尺寸的旋转
rot_mat = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated_image = cv2.warpAffine(image_np, rot_mat, (width, height), flags=cv2.INTER_CUBIC)
# 转换回tensor格式
rotated_tensor = np2tensor(rotated_image).unsqueeze(0)
return (rotated_tensor,)
class TrimImageBorders:
@classmethod
def INPUT_TYPES(cls):
return {
'required': {
'image': ('IMAGE',),
'threshold': (
'INT',
{'default': 10, 'min': 0, 'max': 14096, 'step': 1},
),
},
}
RETURN_TYPES = ('IMAGE',)
FUNCTION = 'run'
CATEGORY = _CATEGORY
DESCRIPTION = '图片去黑边'
def run(self, image, threshold):
img = tensor2np(image[0])
img = Image.fromarray(img)
gray_image = img.convert('L')
binary_image = gray_image.point(lambda x: 255 if x > threshold else 0)
bbox = binary_image.getbbox()
if bbox:
cropped_image = img.crop(bbox)
else:
cropped_image = img
cropped_image = np2tensor(cropped_image).unsqueeze(0)
return (cropped_image,)
IMAGE_SCALE_CLASS_MAPPINGS = {
'GetImageSize-': GetImageSize,
'ImageScalerForSDModels-': ImageScalerForSDModels,
'ImageScaleBySpecifiedSide-': ImageScaleBySpecifiedSide,
'ComputeImageScaleRatio-': ComputeImageScaleRatio,
'ImageRotate-': ImageRotate,
'TrimImageBorders-': TrimImageBorders,
}
IMAGE_SCALE_NAME_MAPPINGS = {
'GetImageSize-': 'Get Image Size',
'ImageScalerForSDModels-': 'Image Scaler for SD Models',
'ImageScaleBySpecifiedSide-': 'Image Scale By Specified Side',
'ComputeImageScaleRatio-': 'Compute Image Scale Ratio',
'ImageRotate-': 'Image Rotate',
'TrimImageBorders-': 'Trim Image Borders',
}
|