File size: 8,838 Bytes
f2dbf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import math

import torch
from PIL import Image

from custom_nodes.ComfyUI_IPAdapter_plus.IPAdapterPlus import (
    WEIGHT_TYPES,
    IPAdapterAdvanced,
    ipadapter_execute,
)
from custom_nodes.ComfyUI_IPAdapter_plus.utils import contrast_adaptive_sharpening

try:
    import torchvision.transforms.v2 as T
except ImportError:
    import torchvision.transforms as T

_CATEGORY = 'fnodes/ipadapter'


class IPAdapterMSLayerWeights:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'model_type': (['SDXL', 'SD15'],),
                'L0': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L1': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L2': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L3_Composition': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L4': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L5': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L6_Style': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L7': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L8': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L9': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L10': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L11': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L12': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L13': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L14': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
                'L15': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 10, 'step': 0.01}),
            }
        }

    INPUT_NAME = 'layer_weights'
    RETURN_TYPES = ('STRING',)
    RETURN_NAMES = ('layer_weights',)
    FUNCTION = 'execute'
    CATEGORY = _CATEGORY
    DESCRIPTION = 'IPAdapter Mad Scientist Layer Weights'

    def execute(self, model_type, L0, L1, L2, L3_Composition, L4, L5, L6_Style, L7, L8, L9, L10, L11, L12, L13, L14, L15):
        if model_type == 'SD15':
            return (f'0:{L0}, 1:{L1}, 2:{L2}, 3:{L3_Composition}, 4:{L4}, 5:{L5}, 6:{L6_Style}, 7:{L7}, 8:{L8}, 9:{L9}, 10:{L10}, 11:{L11},12:{L12},13:{L13},14:{L14},15:{L15}',)
        else:
            return (f'0:{L0}, 1:{L1}, 2:{L2}, 3:{L3_Composition}, 4:{L4}, 5:{L5}, 6:{L6_Style}, 7:{L7}, 8:{L8}, 9:{L9}, 10:{L10}, 11:{L11}',)


class IPAdapterMSTiled(IPAdapterAdvanced):
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'model': ('MODEL',),
                'ipadapter': ('IPADAPTER',),
                'image': ('IMAGE',),
                'weight': ('FLOAT', {'default': 1.0, 'min': -1, 'max': 5, 'step': 0.05}),
                'weight_faceidv2': ('FLOAT', {'default': 1.0, 'min': -1, 'max': 5.0, 'step': 0.05}),
                'weight_type': (WEIGHT_TYPES,),
                'combine_embeds': (['concat', 'add', 'subtract', 'average', 'norm average'],),
                'start_at': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 1.0, 'step': 0.001}),
                'end_at': ('FLOAT', {'default': 1.0, 'min': 0.0, 'max': 1.0, 'step': 0.001}),
                'embeds_scaling': (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'],),
                'sharpening': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 1.0, 'step': 0.05}),
                'layer_weights': ('STRING', {'default': '', 'multiline': True}),
            },
            'optional': {
                'image_negative': ('IMAGE',),
                'attn_mask': ('MASK',),
                'clip_vision': ('CLIP_VISION',),
                'insightface': ('INSIGHTFACE',),
            },
        }

    CATEGORY = _CATEGORY
    RETURN_TYPES = (
        'MODEL',
        'IMAGE',
        'MASK',
    )
    RETURN_NAMES = (
        'MODEL',
        'tiles',
        'masks',
    )

    def apply_ipadapter(self, model, ipadapter, image, weight, weight_faceidv2, weight_type, combine_embeds, start_at, end_at, embeds_scaling, layer_weights, sharpening, image_negative=None, attn_mask=None, clip_vision=None, insightface=None):
        # 1. Select the models
        if 'ipadapter' in ipadapter:
            ipadapter_model = ipadapter['ipadapter']['model']
            clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model']
        else:
            ipadapter_model = ipadapter
            clip_vision = clip_vision

        if clip_vision is None:
            raise Exception('Missing CLIPVision model.')

        del ipadapter

        # 2. Extract the tiles
        tile_size = 256
        _, oh, ow, _ = image.shape
        if attn_mask is None:
            attn_mask = torch.ones([1, oh, ow], dtype=image.dtype, device=image.device)

        image = image.permute([0, 3, 1, 2])
        attn_mask = attn_mask.unsqueeze(1)
        attn_mask = T.Resize((oh, ow), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask)

        if oh / ow > 0.75 and oh / ow < 1.33:
            image = T.CenterCrop(min(oh, ow))(image)
            resize = (tile_size * 2, tile_size * 2)
            attn_mask = T.CenterCrop(min(oh, ow))(attn_mask)
        else:
            resize = (int(tile_size * ow / oh), tile_size) if oh < ow else (tile_size, int(tile_size * oh / ow))

        imgs = []
        for img in image:
            img = T.ToPILImage()(img)
            img = img.resize(resize, resample=Image.Resampling['LANCZOS'])
            imgs.append(T.ToTensor()(img))
        image = torch.stack(imgs)
        del imgs, img

        attn_mask = T.Resize(resize[::-1], interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask)

        if oh / ow > 4 or oh / ow < 0.25:
            crop = (tile_size, tile_size * 4) if oh < ow else (tile_size * 4, tile_size)
            image = T.CenterCrop(crop)(image)
            attn_mask = T.CenterCrop(crop)(attn_mask)

        attn_mask = attn_mask.squeeze(1)

        if sharpening > 0:
            image = contrast_adaptive_sharpening(image, sharpening)

        image = image.permute([0, 2, 3, 1])

        _, oh, ow, _ = image.shape

        tiles_x = math.ceil(ow / tile_size)
        tiles_y = math.ceil(oh / tile_size)
        overlap_x = max(0, (tiles_x * tile_size - ow) / (tiles_x - 1 if tiles_x > 1 else 1))
        overlap_y = max(0, (tiles_y * tile_size - oh) / (tiles_y - 1 if tiles_y > 1 else 1))

        base_mask = torch.zeros([attn_mask.shape[0], oh, ow], dtype=image.dtype, device=image.device)

        tiles = []
        masks = []
        for y in range(tiles_y):
            for x in range(tiles_x):
                start_x = int(x * (tile_size - overlap_x))
                start_y = int(y * (tile_size - overlap_y))
                tiles.append(image[:, start_y : start_y + tile_size, start_x : start_x + tile_size, :])
                mask = base_mask.clone()
                mask[:, start_y : start_y + tile_size, start_x : start_x + tile_size] = attn_mask[:, start_y : start_y + tile_size, start_x : start_x + tile_size]
                masks.append(mask)
        del mask

        # 3. Apply the ipadapter to each group of tiles
        model = model.clone()
        for i in range(len(tiles)):
            ipa_args = {
                'image': tiles[i],
                'image_negative': image_negative,
                'weight': weight,
                'weight_faceidv2': weight_faceidv2,
                'weight_type': weight_type,
                'combine_embeds': combine_embeds,
                'start_at': start_at,
                'end_at': end_at,
                'attn_mask': masks[i],
                'unfold_batch': self.unfold_batch,
                'embeds_scaling': embeds_scaling,
                'insightface': insightface,
                'layer_weights': layer_weights,
            }
            model, _ = ipadapter_execute(model, ipadapter_model, clip_vision, **ipa_args)

        return (
            model,
            torch.cat(tiles),
            torch.cat(masks),
        )


IPADAPTER_CLASS_MAPPINGS = {
    'IPAdapterMSTiled-': IPAdapterMSTiled,
    'IPAdapterMSLayerWeights-': IPAdapterMSLayerWeights,
}

IPADAPTER_NAME_MAPPINGS = {
    'IPAdapterMSTiled-': 'IPAdapter MS Tiled',
    'IPAdapterMSLayerWeights-': 'IPAdapter MS Layer Weights',
}