File size: 8,388 Bytes
f2dbf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import sys
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
import tqdm
from .imagefunc import *
from comfy.utils import ProgressBar
sys.path.append(os.path.join(os.path.dirname(__file__), 'BiRefNet_v2'))


def get_models():
    model_path = os.path.join(folder_paths.models_dir, 'BiRefNet', 'pth')
    model_ext = [".pth"]
    model_dict = get_files(model_path, model_ext)
    return model_dict

class LS_LoadBiRefNetModel:

    def __init__(self):
        self.birefnet = None
        self.state_dict = None


    @classmethod
    def INPUT_TYPES(s):
        tmp_list = list(get_models().keys())
        model_list = []
        if 'BiRefNet-general-epoch_244.pth' in tmp_list:
            model_list.append('BiRefNet-general-epoch_244.pth')
            tmp_list.remove('BiRefNet-general-epoch_244.pth')
        model_list.extend(tmp_list)

        return {
            "required": {
                "model": (model_list,),
            },
        }

    RETURN_TYPES = ("BIREFNET_MODEL",)
    RETURN_NAMES = ("birefnet_model",)
    FUNCTION = "load_birefnet_model"
    CATEGORY = '😺dzNodes/LayerMask'

    def load_birefnet_model(self, model):
        from .BiRefNet_v2.models.birefnet import BiRefNet
        from .BiRefNet_v2.utils import check_state_dict
        model_dict = get_models()
        self.birefnet = BiRefNet(bb_pretrained=False)
        self.state_dict = torch.load(model_dict[model], map_location='cpu', weights_only=True)
        self.state_dict = check_state_dict(self.state_dict)
        self.birefnet.load_state_dict(self.state_dict)
        return (self.birefnet,)

class LS_LoadBiRefNetModelV2:
    def __init__(self):
        self.model = None

    @classmethod
    def INPUT_TYPES(s):
        model_list = list(s.birefnet_model_repos.keys())
        return {
            "required": {
                "version": (model_list,{"default": model_list[0]}),
            },
        }
    
    RETURN_TYPES = ("BIREFNET_MODEL",)
    RETURN_NAMES = ("birefnet_model",)
    FUNCTION = "load_birefnet_model"
    CATEGORY = '😺dzNodes/LayerMask'

    birefnet_model_repos = {
        "BiRefNet-General": "ZhengPeng7/BiRefNet",
        "RMBG-2.0": "briaai/RMBG-2.0"
    }

    def load_birefnet_model(self, version):
        birefnet_path = os.path.join(folder_paths.models_dir, 'BiRefNet')
        os.makedirs(birefnet_path, exist_ok=True)

        model_path = os.path.join(birefnet_path, version)

        if version == "BiRefNet-General":
            old_birefnet_path = os.path.join(birefnet_path, 'pth')
            old_model = "BiRefNet-general-epoch_244.pth"
            old_model_path = os.path.join(old_birefnet_path, old_model)
            if os.path.exists(old_model_path):
                from .BiRefNet_v2.models.birefnet import BiRefNet
                from .BiRefNet_v2.utils import check_state_dict
                self.birefnet = BiRefNet(bb_pretrained=False)
                self.state_dict = torch.load(old_model_path, map_location='cpu', weights_only=True)
                self.state_dict = check_state_dict(self.state_dict)
                self.birefnet.load_state_dict(self.state_dict)
                return (self.birefnet,)
        elif not os.path.exists(model_path):
            log(f"Downloading {version} model...")
            repo_id = self.birefnet_model_repos[version]
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id=repo_id, local_dir=model_path, ignore_patterns=["*.md", "*.txt"])

        self.model = AutoModelForImageSegmentation.from_pretrained(model_path, trust_remote_code=True)
        return (self.model,)

class LS_BiRefNetUltraV2:

    def __init__(self):
        self.NODE_NAME = 'BiRefNetUltraV2'

    @classmethod
    def INPUT_TYPES(cls):

        method_list = ['VITMatte', 'VITMatte(local)', 'PyMatting', 'GuidedFilter', ]
        device_list = ['cuda', 'cpu']
        return {
            "required": {
                "image": ("IMAGE",),
                "birefnet_model": ("BIREFNET_MODEL",),
                "detail_method": (method_list,),
                "detail_erode": ("INT", {"default": 4, "min": 1, "max": 255, "step": 1}),
                "detail_dilate": ("INT", {"default": 2, "min": 1, "max": 255, "step": 1}),
                "black_point": ("FLOAT", {"default": 0.01, "min": 0.01, "max": 0.98, "step": 0.01, "display": "slider"}),
                "white_point": ("FLOAT", {"default": 0.99, "min": 0.02, "max": 0.99, "step": 0.01, "display": "slider"}),
                "process_detail": ("BOOLEAN", {"default": False}),
                "device": (device_list,),
                "max_megapixels": ("FLOAT", {"default": 2.0, "min": 1, "max": 999, "step": 0.1}),
            },
            "optional": {
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK", )
    RETURN_NAMES = ("image", "mask", )
    FUNCTION = "birefnet_ultra_v2"
    CATEGORY = '😺dzNodes/LayerMask'

    def birefnet_ultra_v2(self, image, birefnet_model, detail_method, detail_erode, detail_dilate,
                       black_point, white_point, process_detail, device, max_megapixels):
        ret_images = []
        ret_masks = []
        inference_image_size = (1024, 1024)
        if detail_method == 'VITMatte(local)':
            local_files_only = True
        else:
            local_files_only = False

        torch.set_float32_matmul_precision(['high', 'highest'][0])
        birefnet_model.to(device)
        birefnet_model.eval()

        comfy_pbar = ProgressBar(len(image))
        tqdm_pbar = tqdm(total=len(image), desc="Processing BiRefNet")
        for i in image:
            i = torch.unsqueeze(i, 0)
            orig_image = tensor2pil(i).convert('RGB')

            transform_image = transforms.Compose([
                transforms.Resize(inference_image_size),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])

            inference_image = transform_image(orig_image).unsqueeze(0).to(device)

            # Prediction
            with torch.no_grad():
                preds = birefnet_model(inference_image)[-1].sigmoid().cpu()
            pred = preds[0].squeeze()
            pred_pil = transforms.ToPILImage()(pred)
            _mask = pred_pil.resize(inference_image_size)

            resize_sampler = Image.BILINEAR
            _mask = _mask.resize(orig_image.size, resize_sampler)
            brightness_image = ImageEnhance.Brightness(_mask)
            _mask = brightness_image.enhance(factor=1.08)
            _mask = image2mask(_mask)

            detail_range = detail_erode + detail_dilate

            if process_detail:
                if detail_method == 'GuidedFilter':
                    _mask = guided_filter_alpha(i, _mask, detail_range // 6 + 1)
                    _mask = tensor2pil(histogram_remap(_mask, black_point, white_point))
                elif detail_method == 'PyMatting':
                    _mask = tensor2pil(mask_edge_detail(i, _mask, detail_range // 8 + 1, black_point, white_point))
                else:
                    _trimap = generate_VITMatte_trimap(_mask, detail_erode, detail_dilate)
                    _mask = generate_VITMatte(orig_image, _trimap, local_files_only=local_files_only, device=device, max_megapixels=max_megapixels)
                    _mask = tensor2pil(histogram_remap(pil2tensor(_mask), black_point, white_point))
            else:
                _mask = tensor2pil(_mask)

            ret_image = RGB2RGBA(orig_image, _mask.convert('L'))
            ret_images.append(pil2tensor(ret_image))
            ret_masks.append(image2mask(_mask))

            comfy_pbar.update(1)
            tqdm_pbar.update(1)

        log(f"{self.NODE_NAME} Processed {len(ret_masks)} image(s).", message_type='finish')
        return (torch.cat(ret_images, dim=0), torch.cat(ret_masks, dim=0),)

NODE_CLASS_MAPPINGS = {
    "LayerMask: BiRefNetUltraV2": LS_BiRefNetUltraV2,
    "LayerMask: LoadBiRefNetModel": LS_LoadBiRefNetModel,
    "LayerMask: LoadBiRefNetModelV2": LS_LoadBiRefNetModelV2
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "LayerMask: BiRefNetUltraV2": "LayerMask: BiRefNet Ultra V2",
    "LayerMask: LoadBiRefNetModel": "LayerMask: Load BiRefNet Model",
    "LayerMask: LoadBiRefNetModelV2": "LayerMask: Load BiRefNet Model V2"
}