Spaces:
Runtime error
Runtime error
File size: 12,590 Bytes
f2dbf59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
"""
author: Chris Freilich
description: This extension provides a blend modes node with 30 blend modes.
"""
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
from colorsys import rgb_to_hsv
from blend_modes import difference, normal, screen, soft_light, lighten_only, dodge, \
addition, darken_only, multiply, hard_light, \
grain_extract, grain_merge, divide, overlay
def dissolve(backdrop, source, opacity):
# Normalize the RGB and alpha values to 0-1
backdrop_norm = backdrop[:, :, :3] / 255
source_norm = source[:, :, :3] / 255
source_alpha_norm = source[:, :, 3] / 255
# Calculate the transparency of each pixel in the source image
transparency = opacity * source_alpha_norm
# Generate a random matrix with the same shape as the source image
random_matrix = np.random.random(source.shape[:2])
# Create a mask where the random values are less than the transparency
mask = random_matrix < transparency
# Use the mask to select pixels from the source or backdrop
blend = np.where(mask[..., None], source_norm, backdrop_norm)
# Apply the alpha channel of the source image to the blended image
new_rgb = (1 - source_alpha_norm[..., None]) * backdrop_norm + source_alpha_norm[..., None] * blend
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert the RGB values back to 0-255
new_rgb = new_rgb * 255
# Calculate the new alpha value by taking the maximum of the backdrop and source alpha channels
new_alpha = np.maximum(backdrop[:, :, 3], source[:, :, 3])
# Create a new RGBA image with the calculated RGB and alpha values
result = np.dstack((new_rgb, new_alpha))
return result
def rgb_to_hsv_via_torch(rgb_numpy: np.ndarray, device=None) -> torch.Tensor:
"""
Convert an RGB image to HSV.
:param rgb: A tensor of shape (3, H, W) where the three channels correspond to R, G, B.
The values should be in the range [0, 1].
:return: A tensor of shape (3, H, W) where the three channels correspond to H, S, V.
The hue (H) will be in the range [0, 1], while S and V will be in the range [0, 1].
"""
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
rgb = torch.from_numpy(rgb_numpy).float().permute(2, 0, 1).to(device)
r, g, b = rgb[0], rgb[1], rgb[2]
max_val, _ = torch.max(rgb, dim=0)
min_val, _ = torch.min(rgb, dim=0)
delta = max_val - min_val
h = torch.zeros_like(max_val)
s = torch.zeros_like(max_val)
v = max_val
# calc hue... avoid div by zero (by masking the delta)
mask = delta != 0
r_eq_max = (r == max_val) & mask
g_eq_max = (g == max_val) & mask
b_eq_max = (b == max_val) & mask
h[r_eq_max] = (g[r_eq_max] - b[r_eq_max]) / delta[r_eq_max] % 6
h[g_eq_max] = (b[g_eq_max] - r[g_eq_max]) / delta[g_eq_max] + 2.0
h[b_eq_max] = (r[b_eq_max] - g[b_eq_max]) / delta[b_eq_max] + 4.0
h = (h / 6.0) % 1.0
# calc saturation
s[max_val != 0] = delta[max_val != 0] / max_val[max_val != 0]
hsv = torch.stack([h, s, v], dim=0)
hsv_numpy = hsv.permute(1, 2, 0).cpu().numpy()
return hsv_numpy
def hsv_to_rgb_via_torch(hsv_numpy: np.ndarray, device=None) -> torch.Tensor:
"""
Convert an HSV image to RGB.
:param hsv: A tensor of shape (3, H, W) where the three channels correspond to H, S, V.
The H channel values should be in the range [0, 1], while S and V will be in the range [0, 1].
:return: A tensor of shape (3, H, W) where the three channels correspond to R, G, B.
The RGB values will be in the range [0, 1].
"""
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hsv = torch.from_numpy(hsv_numpy).float().permute(2, 0, 1).to(device)
h, s, v = hsv[0], hsv[1], hsv[2]
c = v * s # chroma
x = c * (1 - torch.abs((h * 6) % 2 - 1))
m = v - c # match value
z = torch.zeros_like(h)
rgb = torch.zeros_like(hsv)
# define conditions for different hue ranges
h_cond = [
(h < 1/6, torch.stack([c, x, z], dim=0)),
((1/6 <= h) & (h < 2/6), torch.stack([x, c, z], dim=0)),
((2/6 <= h) & (h < 3/6), torch.stack([z, c, x], dim=0)),
((3/6 <= h) & (h < 4/6), torch.stack([z, x, c], dim=0)),
((4/6 <= h) & (h < 5/6), torch.stack([x, z, c], dim=0)),
(h >= 5/6, torch.stack([c, z, x], dim=0)),
]
# conditionally set RGB values based on the hue range
for cond, result in h_cond:
rgb[:, cond] = result[:, cond]
# add match value to convert to final RGB values
rgb = rgb + m
rgb_numpy = rgb.permute(1, 2, 0).cpu().numpy()
return rgb_numpy
def hsv(backdrop, source, opacity, channel):
# Convert RGBA to RGB, normalized
backdrop_rgb = backdrop[:, :, :3] / 255.0
source_rgb = source[:, :, :3] / 255.0
source_alpha = source[:, :, 3] / 255.0
# Convert RGB to HSV
backdrop_hsv = rgb_to_hsv_via_torch(backdrop_rgb)
source_hsv = rgb_to_hsv_via_torch(source_rgb)
# Combine HSV values
new_hsv = backdrop_hsv.copy()
# Determine which channel to operate on
if channel == "saturation":
new_hsv[:, :, 1] = (1 - opacity * source_alpha) * backdrop_hsv[:, :, 1] + opacity * source_alpha * source_hsv[:, :, 1]
elif channel == "luminance":
new_hsv[:, :, 2] = (1 - opacity * source_alpha) * backdrop_hsv[:, :, 2] + opacity * source_alpha * source_hsv[:, :, 2]
elif channel == "hue":
new_hsv[:, :, 0] = (1 - opacity * source_alpha) * backdrop_hsv[:, :, 0] + opacity * source_alpha * source_hsv[:, :, 0]
elif channel == "color":
new_hsv[:, :, :2] = (1 - opacity * source_alpha[..., None]) * backdrop_hsv[:, :, :2] + opacity * source_alpha[..., None] * source_hsv[:, :, :2]
# Convert HSV back to RGB
new_rgb = hsv_to_rgb_via_torch(new_hsv)
# Apply the alpha channel of the source image to the new RGB image
new_rgb = (1 - source_alpha[..., None]) * backdrop_rgb + source_alpha[..., None] * new_rgb
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert RGB back to RGBA and scale to 0-255 range
new_rgba = np.dstack((new_rgb * 255, backdrop[:, :, 3]))
return new_rgba.astype(np.uint8)
def saturation(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "saturation")
def luminance(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "luminance")
def hue(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "hue")
def color(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "color")
def darker_lighter_color(backdrop, source, opacity, type):
# Normalize the RGB and alpha values to 0-1
backdrop_norm = backdrop[:, :, :3] / 255
source_norm = source[:, :, :3] / 255
source_alpha_norm = source[:, :, 3] / 255
# Convert RGB to HSV
backdrop_hsv = np.array([rgb_to_hsv(*rgb) for row in backdrop_norm for rgb in row]).reshape(backdrop.shape[:2] + (3,))
source_hsv = np.array([rgb_to_hsv(*rgb) for row in source_norm for rgb in row]).reshape(source.shape[:2] + (3,))
# Create a mask where the value (brightness) of the source image is less than the value of the backdrop image
if type == "dark":
mask = source_hsv[:, :, 2] < backdrop_hsv[:, :, 2]
else:
mask = source_hsv[:, :, 2] > backdrop_hsv[:, :, 2]
# Use the mask to select pixels from the source or backdrop
blend = np.where(mask[..., None], source_norm, backdrop_norm)
# Apply the alpha channel of the source image to the blended image
new_rgb = (1 - source_alpha_norm[..., None] * opacity) * backdrop_norm + source_alpha_norm[..., None] * opacity * blend
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert the RGB values back to 0-255
new_rgb = new_rgb * 255
# Calculate the new alpha value by taking the maximum of the backdrop and source alpha channels
new_alpha = np.maximum(backdrop[:, :, 3], source[:, :, 3])
# Create a new RGBA image with the calculated RGB and alpha values
result = np.dstack((new_rgb, new_alpha))
return result
def darker_color(backdrop, source, opacity):
return darker_lighter_color(backdrop, source, opacity, "dark")
def lighter_color(backdrop, source, opacity):
return darker_lighter_color(backdrop, source, opacity, "light")
def simple_mode(backdrop, source, opacity, mode):
# Normalize the RGB and alpha values to 0-1
backdrop_norm = backdrop[:, :, :3] / 255
source_norm = source[:, :, :3] / 255
source_alpha_norm = source[:, :, 3:4] / 255
# Calculate the blend without any transparency considerations
if mode == "linear_burn":
blend = backdrop_norm + source_norm - 1
elif mode == "linear_light":
blend = backdrop_norm + (2 * source_norm) - 1
elif mode == "color_dodge":
blend = backdrop_norm / (1 - source_norm)
blend = np.clip(blend, 0, 1)
elif mode == "color_burn":
blend = 1 - ((1 - backdrop_norm) / source_norm)
blend = np.clip(blend, 0, 1)
elif mode == "exclusion":
blend = backdrop_norm + source_norm - (2 * backdrop_norm * source_norm)
elif mode == "subtract":
blend = backdrop_norm - source_norm
elif mode == "vivid_light":
blend = np.where(source_norm <= 0.5, backdrop_norm / (1 - 2 * source_norm), 1 - (1 -backdrop_norm) / (2 * source_norm - 0.5) )
blend = np.clip(blend, 0, 1)
elif mode == "pin_light":
blend = np.where(source_norm <= 0.5, np.minimum(backdrop_norm, 2 * source_norm), np.maximum(backdrop_norm, 2 * (source_norm - 0.5)))
elif mode == "hard_mix":
blend = simple_mode(backdrop, source, opacity, "linear_light")
blend = np.round(blend[:, :, :3] / 255)
# Apply the blended layer back onto the backdrop layer while utilizing the alpha channel and opacity information
new_rgb = (1 - source_alpha_norm * opacity) * backdrop_norm + source_alpha_norm * opacity * blend
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert the RGB values back to 0-255
new_rgb = new_rgb * 255
# Calculate the new alpha value by taking the maximum of the backdrop and source alpha channels
new_alpha = np.maximum(backdrop[:, :, 3], source[:, :, 3])
# Create a new RGBA image with the calculated RGB and alpha values
result = np.dstack((new_rgb, new_alpha))
return result
def linear_light(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "linear_light")
def vivid_light(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "vivid_light")
def pin_light(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "pin_light")
def hard_mix(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "hard_mix")
def linear_burn(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "linear_burn")
def color_dodge(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "color_dodge")
def color_burn(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "color_burn")
def exclusion(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "exclusion")
def subtract(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "subtract")
BLEND_MODES = {
"normal": normal,
"dissolve": dissolve,
"darken": darken_only,
"multiply": multiply,
"color burn": color_burn,
"linear burn": linear_burn,
"darker color": darker_color,
"lighten": lighten_only,
"screen": screen,
"color dodge": color_dodge,
"linear dodge(add)": addition,
"lighter color": lighter_color,
"dodge": dodge,
"overlay": overlay,
"soft light": soft_light,
"hard light": hard_light,
"vivid light": vivid_light,
"linear light": linear_light,
"pin light": pin_light,
"hard mix": hard_mix,
"difference": difference,
"exclusion": exclusion,
"subtract": subtract,
"divide": divide,
"hue": hue,
"saturation": saturation,
"color": color,
"luminosity": luminance,
"grain extract": grain_extract,
"grain merge": grain_merge
}
|