File size: 3,695 Bytes
f2dbf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import hashlib
import os
import time
from PIL import Image

from ..helper import encode_pil_to_base64, gen_frontend_mask
from ..plugins.anime_seg import AnimeSeg
from ..schema import RunPluginRequest, RemoveBGModel, InteractiveSegModel
from ..tests.utils import check_device, current_dir, save_dir

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import cv2
import pytest

from ..plugins import (
    RemoveBG,
    RealESRGANUpscaler,
    GFPGANPlugin,
    RestoreFormerPlugin,
    InteractiveSeg,
)

img_p = current_dir / "bunny.jpeg"
img_bytes = open(img_p, "rb").read()
bgr_img = cv2.imread(str(img_p))
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
rgb_img_base64 = encode_pil_to_base64(Image.fromarray(rgb_img), 100, {})
bgr_img_base64 = encode_pil_to_base64(Image.fromarray(bgr_img), 100, {})


def _save(img, name):
    cv2.imwrite(str(save_dir / name), img)


def test_remove_bg():
    model = RemoveBG(RemoveBGModel.briaai_rmbg_1_4)
    rgba_np_img = model.gen_image(
        rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
    )
    res = cv2.cvtColor(rgba_np_img, cv2.COLOR_RGBA2BGRA)
    _save(res, "test_remove_bg.png")

    bgr_np_img = model.gen_mask(
        rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
    )

    res_mask = gen_frontend_mask(bgr_np_img)
    _save(res_mask, "test_remove_bg_frontend_mask.png")

    assert len(bgr_np_img.shape) == 2
    _save(bgr_np_img, "test_remove_bg_mask.jpeg")


def test_anime_seg():
    model = AnimeSeg()
    img = cv2.imread(str(current_dir / "anime_test.png"))
    img_base64 = encode_pil_to_base64(Image.fromarray(img), 100, {})
    res = model.gen_image(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
    assert len(res.shape) == 3
    assert res.shape[-1] == 4
    _save(res, "test_anime_seg.png")

    res = model.gen_mask(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
    assert len(res.shape) == 2
    _save(res, "test_anime_seg_mask.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_upscale(device):
    check_device(device)
    model = RealESRGANUpscaler("realesr-general-x4v3", device)
    res = model.gen_image(
        rgb_img,
        RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=2),
    )
    _save(res, f"test_upscale_x2_{device}.png")

    res = model.gen_image(
        rgb_img,
        RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=4),
    )
    _save(res, f"test_upscale_x4_{device}.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_gfpgan(device):
    check_device(device)
    model = GFPGANPlugin(device)
    res = model.gen_image(
        rgb_img, RunPluginRequest(name=GFPGANPlugin.name, image=rgb_img_base64)
    )
    _save(res, f"test_gfpgan_{device}.png")


@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_restoreformer(device):
    check_device(device)
    model = RestoreFormerPlugin(device)
    res = model.gen_image(
        rgb_img, RunPluginRequest(name=RestoreFormerPlugin.name, image=rgb_img_base64)
    )
    _save(res, f"test_restoreformer_{device}.png")


@pytest.mark.parametrize("name", InteractiveSegModel.values())
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_segment_anything(name, device):
    check_device(device)
    model = InteractiveSeg(name, device)
    new_mask = model.gen_mask(
        rgb_img,
        RunPluginRequest(
            name=InteractiveSeg.name,
            image=rgb_img_base64,
            clicks=([[448 // 2, 394 // 2, 1]]),
        ),
    )

    save_name = f"test_segment_anything_{name}_{device}.png"
    _save(new_mask, save_name)