Dreamspire's picture
custom_nodes
f2dbf59
raw
history blame
4.25 kB
import os
import argparse
from glob import glob
from tqdm import tqdm
import cv2
import torch
from .dataset import MyData
from .models.birefnet import BiRefNet
from .utils import save_tensor_img, check_state_dict
from .config import Config
config = Config()
def inference(model, data_loader_test, pred_root, method, testset, device=0):
model_training = model.training
if model_training:
model.eval()
for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test:
inputs = batch[0].to(device)
# gts = batch[1].to(device)
label_paths = batch[-1]
with torch.no_grad():
scaled_preds = model(inputs)[-1].sigmoid()
os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True)
for idx_sample in range(scaled_preds.shape[0]):
res = torch.nn.functional.interpolate(
scaled_preds[idx_sample].unsqueeze(0),
size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2],
mode='bilinear',
align_corners=True
)
save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) # test set dir + file name
if model_training:
model.train()
return None
def main(args):
# Init model
device = config.device
if args.ckpt_folder:
print('Testing with models in {}'.format(args.ckpt_folder))
else:
print('Testing with model {}'.format(args.ckpt))
if config.model == 'BiRefNet':
model = BiRefNet(bb_pretrained=False)
weights_lst = sorted(
glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt],
key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]),
reverse=True
)
for testset in args.testsets.split('+'):
print('>>>> Testset: {}...'.format(testset))
data_loader_test = torch.utils.data.DataLoader(
dataset=MyData(testset, image_size=config.size, is_train=False),
batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True
)
for weights in weights_lst:
if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0:
continue
print('\tInferencing {}...'.format(weights))
# model.load_state_dict(torch.load(weights, map_location='cpu'))
state_dict = torch.load(weights, map_location='cpu')
state_dict = check_state_dict(state_dict)
model.load_state_dict(state_dict)
model = model.to(device)
inference(
model, data_loader_test=data_loader_test, pred_root=args.pred_root,
method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]),
testset=testset, device=config.device
)
if __name__ == '__main__':
# Parameter from command line
parser = argparse.ArgumentParser(description='')
parser.add_argument('--ckpt', type=str, help='model folder')
parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder')
parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder')
parser.add_argument('--testsets',
default={
'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4',
'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON',
'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON',
'General': 'DIS-VD',
'Matting': 'TE-P3M-500-P',
'DIS5K-': 'DIS-VD',
'COD-': 'TE-COD10K',
'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD',
}[config.task + ''],
type=str,
help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'")
args = parser.parse_args()
if config.precisionHigh:
torch.set_float32_matmul_precision('high')
main(args)